Solveeit Logo

Question

Question: How can you prove \[\int {\dfrac{{dx}}{{{a^2} - {x^2}}} = \dfrac{1}{{2a}}\log \left| {\dfrac{{a + x}...

How can you prove dxa2x2=12aloga+xax+c\int {\dfrac{{dx}}{{{a^2} - {x^2}}} = \dfrac{1}{{2a}}\log \left| {\dfrac{{a + x}}{{a - x}}} \right| + c} using x=asinθx = a\sin \theta ?

Explanation

Solution

In solving the given question, first derive the given condition i.e., x=asinθx = a\sin \theta , and we will get and trigonometric expression by using some trigonometric identities and formulas, and after simplifying the expression we will get an expression that is easily integrated and after integrating we will get the expression on the right hand side, which is the given question.

Complete step-by-step solution:
Given expression is dxa2x2\int {\dfrac{{dx}}{{{a^2} - {x^2}}}} , we have to prove that this equal to 12aloga+xax+c\dfrac{1}{{2a}}\log \left| {\dfrac{{a + x}}{{a - x}}} \right| + c using x=asinθx = a\sin \theta
Now given that,
x=asinθx = a\sin \theta ,
Now differentiating both sides we get,
dx=ddxasinθ\Rightarrow dx = \dfrac{d}{{dx}}a\sin \theta,
Applying derivatives we get,
dx=acosθdθ\Rightarrow dx = a\cos \theta d\theta,
Now substituting the values we get in the given expression dxa2x2\int {\dfrac{{dx}}{{{a^2} - {x^2}}}} , we get,
acosθdθa2(asinθ)2\Rightarrow \int {\dfrac{{a\cos \theta d\theta }}{{{a^2} - {{\left( {a\sin \theta } \right)}^2}}}},
Now simplifying we get,
acosθdθa2a2sin2θ\Rightarrow \int {\dfrac{{a\cos \theta d\theta }}{{{a^2} - {a^2}{{\sin }^2}\theta }}},
Now taking out the common terms, we get,
acosθdθa2(1sin2θ)\Rightarrow \int {\dfrac{{a\cos \theta d\theta }}{{{a^2}\left( {1 - {{\sin }^2}\theta } \right)}}},
Now using the trigonometric identities i.e.,1sin2θ=cos2θ1 - {\sin ^2}\theta = {\cos ^2}\theta , then the expression becomes,
acosθdθa2cos2θ\Rightarrow \int {\dfrac{{a\cos \theta d\theta }}{{{a^2}{{\cos }^2}\theta }}},
Now eliminating the like terms we get,
dθacosθ\Rightarrow \int {\dfrac{{d\theta }}{{a\cos \theta }}},
Now again using trigonometric identitycosθ=1secθ\cos \theta = \dfrac{1}{{\sec \theta }}we get,
1asecθdθ\Rightarrow \dfrac{1}{a}\int {\sec \theta d\theta },
Now multiplying and dividing withsecθ+tanθ\sec \theta + \tan \theta , we get,
1asecθ(secθ+tanθ)secθ+tanθdθ\Rightarrow \dfrac{1}{a}\int {\dfrac{{\sec \theta \left( {\sec \theta + \tan \theta } \right)}}{{\sec \theta + \tan \theta }}d\theta },
Now simplifying we get,
1asec2θ+secθtanθsecθ+tanθdθ\Rightarrow \dfrac{1}{a}\int {\dfrac{{{{\sec }^2}\theta + \sec \theta \tan \theta }}{{\sec \theta + \tan \theta }}d\theta },
Now put u=secθ+tanθ\sec \theta + \tan \theta ,
Now derivating on both sides we get,
du=d(secθ+tanθ)du = d\left( {\sec \theta + \tan \theta } \right),
Derivating each term we get,
du=sec2θ+secθtanθdθdu = {\sec ^2}\theta + \sec \theta \tan \theta d\theta ,
Now substituting we get,
1aduu\Rightarrow \dfrac{1}{a}\int {\dfrac{{du}}{u}},
Now applying integration we get,
1alogu\Rightarrow \dfrac{1}{a}\left| {\log u} \right|,
Now we know that u=secθ+tanθ\sec \theta + \tan \theta ,,
So, substituting the value we get,
1alog(secθ+tanθ)\Rightarrow \dfrac{1}{a}\left| {\log \left( {\sec \theta + \tan \theta } \right)} \right|,
Now using trigonometric identities secθ=1cosθ,tanθ=sinθcosθ\sec \theta = \dfrac{1}{{\cos \theta }},\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}, we get,
1alog(1cosθ+sinθcosθ)\Rightarrow \dfrac{1}{a}\left| {\log \left( {\dfrac{1}{{\cos \theta }} + \dfrac{{\sin \theta }}{{\cos \theta }}} \right)} \right|,
Now simplifying we get,
1alog(1+sinθcosθ)\Rightarrow \dfrac{1}{a}\left| {\log \left( {\dfrac{{1 + \sin \theta }}{{\cos \theta }}} \right)} \right|,
Now multiplying and dividing with 2, we get,
12a2log(1+sinθcosθ)\Rightarrow \dfrac{1}{{2a}}\left| {2\log \left( {\dfrac{{1 + \sin \theta }}{{\cos \theta }}} \right)} \right|,
Now using logarithmic properties we get,
12alog(1+sinθcosθ)2\Rightarrow \dfrac{1}{{2a}}\left| {\log {{\left( {\dfrac{{1 + \sin \theta }}{{\cos \theta }}} \right)}^2}} \right|
Now by simplifying we get,
12alog((1+sinθ)2cos2θ)\Rightarrow \dfrac{1}{{2a}}\left| {\log \left( {\dfrac{{{{\left( {1 + \sin \theta } \right)}^2}}}{{{{\cos }^2}\theta }}} \right)} \right|,
Now again using trigonometric identities, cos2θ=1sin2θ{\cos ^2}\theta = 1 - {\sin ^2}\theta we get,
12alog((1+sinθ)21sin2θ)\Rightarrow \dfrac{1}{{2a}}\left| {\log \left( {\dfrac{{{{\left( {1 + \sin \theta } \right)}^2}}}{{1 - {{\sin }^2}\theta }}} \right)} \right|,
Now simplifying we get,
12alog((1+sinθ)2(1sinθ)(1+sinθ))\Rightarrow \dfrac{1}{{2a}}\left| {\log \left( {\dfrac{{{{\left( {1 + \sin \theta } \right)}^2}}}{{\left( {1 - \sin \theta } \right)\left( {1 + \sin \theta } \right)}}} \right)} \right|,
Now eliminating the like terms we get,
12alog((1+sinθ)(1sinθ))\Rightarrow \dfrac{1}{{2a}}\left| {\log \left( {\dfrac{{\left( {1 + \sin \theta } \right)}}{{\left( {1 - \sin \theta } \right)}}} \right)} \right|
Now using the condition x=asinθx = a\sin \theta ,
sinθ=xa\Rightarrow \sin \theta = \dfrac{x}{a},
Now substituting the value in the expression we get,
12alog((1+xa)(1xa))\Rightarrow \dfrac{1}{{2a}}\left| {\log \left( {\dfrac{{\left( {1 + \dfrac{x}{a}} \right)}}{{\left( {1 - \dfrac{x}{a}} \right)}}} \right)} \right|,
Now simplifying we get,
12alog((a+xa)(axa))\Rightarrow \dfrac{1}{{2a}}\left| {\log \left( {\dfrac{{\left( {\dfrac{{a + x}}{a}} \right)}}{{\left( {\dfrac{{a - x}}{a}} \right)}}} \right)} \right|,
Now eliminating the denominators we get,
12alog(a+xax)+c\Rightarrow \dfrac{1}{{2a}}\left| {\log \left( {\dfrac{{a + x}}{{a - x}}} \right)} \right| + c
Hence proved.

When we use the condition x=asinθx = a\sin \theta , then dxa2x2=12aloga+xax+c\int {\dfrac{{dx}}{{{a^2} - {x^2}}} = \dfrac{1}{{2a}}\log \left| {\dfrac{{a + x}}{{a - x}}} \right| + c} .
Hence proved.

Note: In some of the integration questions, trigonometric identities are used to simplify any integral function which consists of trigonometric functions. It simplifies the integral function so that it can be easily integrated. There are many trigonometric identities, here are some useful identities:
sin2x=1cos2x{\sin ^2}x = 1 - {\cos ^2}x,
cos2x=1sin2x{\cos ^2}x = 1 - {\sin ^2}x,
sec2xtan2x=1{\sec ^2}x - {\tan ^2}x = 1,
csc2x=1+cot2x{\csc ^2}x = 1 + {\cot ^2}x.