Solveeit Logo

Question

Question: How can you proof \(\int {\dfrac{{dx}}{{{a^2} - {x^2}}}} = \dfrac{1}{{2a}}\log \left| {\dfrac{{a + x...

How can you proof dxa2x2=12aloga+xax+c\int {\dfrac{{dx}}{{{a^2} - {x^2}}}} = \dfrac{1}{{2a}}\log \left| {\dfrac{{a + x}}{{a - x}}} \right| + c using x=asinθx = a\sin \theta ?

Explanation

Solution

Substitute the given value for xx in the left hand side of the integration and replace dxdx accordingly. Simplify the expression in integration using formula 1sin2θ=cos2θ1 - {\sin ^2}\theta = {\cos ^2}\theta and then integrate it. Determine the other trigonometric ratios from x=asinθx = a\sin \theta to get the integration result in terms of xx. Simplify the final result and bring it in the form of right hand side.

Complete step by step answer:
According to the question, we have to prove the integration using the given substitution.
The integration to prove is:
dxa2x2=12aloga+xax+c .....(1)\Rightarrow \int {\dfrac{{dx}}{{{a^2} - {x^2}}}} = \dfrac{1}{{2a}}\log \left| {\dfrac{{a + x}}{{a - x}}} \right| + c{\text{ }}.....{\text{(1)}}
Let the left hand side integral is denoted as II, then we have:
I=dxa2x2 .....(2)\Rightarrow I = \int {\dfrac{{dx}}{{{a^2} - {x^2}}}} {\text{ }}.....{\text{(2)}}
Now as it is given that we have to use substitution to prove it. So we have:
x=asinθ\Rightarrow x = a\sin \theta
Differentiating it both sides, we’ll get:
dx=acosθdθ\Rightarrow dx = a\cos \theta d\theta
Putting these values in integration equation (2), we’ll get:
I=acosθdθa2(asinθ)2\Rightarrow I = \int {\dfrac{{a\cos \theta d\theta }}{{{a^2} - {{\left( {a\sin \theta } \right)}^2}}}}
Simplifying it further, we’ll het:

I=acosθdθa2a2sin2θ I=acosθdθa2(1sin2θ)  \Rightarrow I = \int {\dfrac{{a\cos \theta d\theta }}{{{a^2} - {a^2}{{\sin }^2}\theta }}} \\\ \Rightarrow I = \int {\dfrac{{a\cos \theta d\theta }}{{{a^2}\left( {1 - {{\sin }^2}\theta } \right)}}} \\\

We know the trigonometric formula 1sin2θ=cos2θ1 - {\sin ^2}\theta = {\cos ^2}\theta . Using this, we’ll get:

I=cosθdθacos2θ I=1adθcosθ I=1asecθdθ  \Rightarrow I = \int {\dfrac{{\cos \theta d\theta }}{{a{{\cos }^2}\theta }}} \\\ \Rightarrow I = \dfrac{1}{a}\int {\dfrac{{d\theta }}{{\cos \theta }}} \\\ \Rightarrow I = \dfrac{1}{a}\int {\sec \theta d\theta } \\\

We know the integration formula secx=logsecx+tanx+c\int {\sec x = } \log \left| {\sec x + \tan x} \right| + c. Using this formula, we’ll get:
I=1alogsecθ+tanθ+c .....(3)\Rightarrow I = \dfrac{1}{a}\log \left| {\sec \theta + \tan \theta } \right| + c{\text{ }}.....{\text{(3)}}
We have used x=asinθx = a\sin \theta . From this we have:
sinθ=xa\Rightarrow \sin \theta = \dfrac{x}{a}
Using the value of sinθ\sin \theta , we can determine other trigonometric ratios. So we have:
secθ=aa2x2\Rightarrow \sec \theta = \dfrac{a}{{\sqrt {{a^2} - {x^2}} }} and tanθ=xa2x2\tan \theta = \dfrac{x}{{\sqrt {{a^2} - {x^2}} }}. Putting these values in equation (3), we’ll get:
I=1alogaa2x2+xa2x2+c\Rightarrow I = \dfrac{1}{a}\log \left| {\dfrac{a}{{\sqrt {{a^2} - {x^2}} }} + \dfrac{x}{{\sqrt {{a^2} - {x^2}} }}} \right| + c
Simplifying this further, we’ll get:
I=1alog(a+x)a2x2+c\Rightarrow I = \dfrac{1}{a}\log \left| {\dfrac{{\left( {a + x} \right)}}{{\sqrt {{a^2} - {x^2}} }}} \right| + c
Using the algebraic formula (x2a2)=(xa)(x+a)\left( {{x^2} - {a^2}} \right) = \left( {x - a} \right)\left( {x + a} \right), we’ll get:

I=1alog(a+x)(a+x)(ax)+c I=1alog(a+x)(a+x)(ax)+c I=1alog(a+x)(ax)+c I=1aloga+xax12+c  \Rightarrow I = \dfrac{1}{a}\log \left| {\dfrac{{\left( {a + x} \right)}}{{\sqrt {\left( {a + x} \right)\left( {a - x} \right)} }}} \right| + c \\\ \Rightarrow I = \dfrac{1}{a}\log \left| {\dfrac{{\left( {a + x} \right)}}{{\sqrt {\left( {a + x} \right)} \sqrt {\left( {a - x} \right)} }}} \right| + c \\\ \Rightarrow I = \dfrac{1}{a}\log \left| {\dfrac{{\sqrt {\left( {a + x} \right)} }}{{\sqrt {\left( {a - x} \right)} }}} \right| + c \\\ \Rightarrow I = \dfrac{1}{a}\log {\left| {\dfrac{{a + x}}{{a - x}}} \right|^{\dfrac{1}{2}}} + c \\\

Applying the logarithmic formula logab=bloga\log {a^b} = b\log a, we’ll get:

I=1a×12loga+xax+c I=12aloga+xax+c  \Rightarrow I = \dfrac{1}{a} \times \dfrac{1}{2}\log \left| {\dfrac{{a + x}}{{a - x}}} \right| + c \\\ \Rightarrow I = \dfrac{1}{{2a}}\log \left| {\dfrac{{a + x}}{{a - x}}} \right| + c \\\

Putting the value of II from equation (2), we’ll get:
dxa2x2=12aloga+xax+c\Rightarrow \int {\dfrac{{dx}}{{{a^2} - {x^2}}}} = \dfrac{1}{{2a}}\log \left| {\dfrac{{a + x}}{{a - x}}} \right| + c
This is the required proof of the integration.

Note: The integration can also be by partial fraction method as shown:
dxa2x2=dx(ax)(a+x)\Rightarrow \int {\dfrac{{dx}}{{{a^2} - {x^2}}}} = \int {\dfrac{{dx}}{{\left( {a - x} \right)\left( {a + x} \right)}}}
Now we can apply partial fraction, the expression in the integration can be written as:
1(ax)(a+x)=12a(1a+x+1ax)\Rightarrow \dfrac{1}{{\left( {a - x} \right)\left( {a + x} \right)}} = \dfrac{1}{{2a}}\left( {\dfrac{1}{{a + x}} + \dfrac{1}{{a - x}}} \right)
Using this partial fraction in the above integration, we’ll get:

dxa2x2=12a(1a+x+1ax)dx dxa2x2=12a(dxa+x+dxax)  \Rightarrow \int {\dfrac{{dx}}{{{a^2} - {x^2}}}} = \int {\dfrac{1}{{2a}}\left( {\dfrac{1}{{a + x}} + \dfrac{1}{{a - x}}} \right)dx} \\\ \Rightarrow \int {\dfrac{{dx}}{{{a^2} - {x^2}}}} = \dfrac{1}{{2a}}\left( {\int {\dfrac{{dx}}{{a + x}} + \int {\dfrac{{dx}}{{a - x}}} } } \right) \\\

Now we can easily integrate this and we will get the same result.