Solveeit Logo

Question

Question: How can the expression of \(a\sin \left( x \right)+b\cos \left( x \right)\) can be written as a sing...

How can the expression of asin(x)+bcos(x)a\sin \left( x \right)+b\cos \left( x \right) can be written as a single trigonometric ratio?

Explanation

Solution

Assume the expression as a single trigonometric ratio of ‘sine’ function i.e. rsin(x+α)r\sin \left( x+\alpha \right). Find the values of ‘a’ and ‘b’ by comparing both the sides, by dividing which the ’α\alpha ’ value can be obtained. By squaring and adding the values of ‘a’ and ‘b’, the value of ‘r’ can also be obtained. Replace the values of ‘r’ and ‘α\alpha ’ to get the required solution.

Complete step by step answer:
To write the expression asin(x)+bcos(x)a\sin \left( x \right)+b\cos \left( x \right) in a single trigonometric ratio we have to convert the expression as a single trigonometric function.
Let’s consider it to be a single function of ‘sine’
So asinx+bcosx=rsin(x+α)a\sin x+b\cos x=r\sin \left( x+\alpha \right) ………. (1)
As we know, sin(a+b)=sinacosb+cosasinb\sin \left( a+b \right)=\sin a\cdot \cos b+\cos a\cdot \sin b
sin(x+α)\sin \left( x+\alpha \right) can be written as sin(x+α)=sinxcosα+cosxsinα\sin \left( x+\alpha \right)=\sin x\cdot \cos \alpha +\cos x\cdot \sin \alpha
asinx+bcosx=r(sinxcosα+cosxsinα) asinx+bcosx=rsinxcosα+rcosxsinα \begin{aligned} & \Rightarrow a\sin x+b\cos x=r\left( \sin x\cdot \cos \alpha +\cos x\cdot \sin \alpha \right) \\\ & \Rightarrow a\sin x+b\cos x=r\sin x\cdot \cos \alpha +r\cos x\cdot \sin \alpha \\\ \end{aligned}
By comparing both the sides, we get
a=rcosαa=r\cos \alpha ………. (2)
b=rsinαb=r\sin \alpha ………. (3)
Dividing equation (3) by (2), we get
ba=rsinαrcosα\dfrac{b}{a}=\dfrac{r\sin \alpha }{r\cos \alpha }
ba=tanα\Rightarrow \dfrac{b}{a}=\tan \alpha (Since sinαcosα=tanα\dfrac{\sin \alpha }{\cos \alpha }=\tan \alpha )
α=tan1(ba)\Rightarrow \alpha ={{\tan }^{-1}}\left( \dfrac{b}{a} \right)
Squaring equations (1) and (2) on both the sides, we get
a2=r2cos2α{{a}^{2}}={{r}^{2}}{{\cos }^{2}}\alpha ………. (4)
b2=r2sin2α{{b}^{2}}={{r}^{2}}{{\sin }^{2}}\alpha ………. (5)
Adding equations (4) and (5), we get
a2+b2=r2cos2α+r2sin2α a2+b2=r2(cos2α+sin2α) \begin{aligned} & {{a}^{2}}+{{b}^{2}}={{r}^{2}}{{\cos }^{2}}\alpha +{{r}^{2}}{{\sin }^{2}}\alpha \\\ & \Rightarrow {{a}^{2}}+{{b}^{2}}={{r}^{2}}\left( {{\cos }^{2}}\alpha +{{\sin }^{2}}\alpha \right) \\\ \end{aligned}
Again as we know cos2α+sin2α=1{{\cos }^{2}}\alpha +{{\sin }^{2}}\alpha =1
a2+b2=r21 a2+b2=r2 \begin{aligned} & \Rightarrow {{a}^{2}}+{{b}^{2}}={{r}^{2}}\cdot 1 \\\ & \Rightarrow {{a}^{2}}+{{b}^{2}}={{r}^{2}} \\\ \end{aligned}
So, ‘r’ can be written as
r=a2+b2\Rightarrow r=\sqrt{{{a}^{2}}+{{b}^{2}}}
Replacing the values of ‘r’ and ‘α\alpha ’ in equation (1), we get
asinx+bcosx=a2+b2sin(x+tan1(ba))a\sin x+b\cos x=\sqrt{{{a}^{2}}+{{b}^{2}}}\sin \left( x+{{\tan }^{-1}}\left( \dfrac{b}{a} \right) \right)
This is the required solution for the given expression.

Note:
Assuming the whole expression as a single trigonometric function of ‘sine’ should be the first approach for solving this question. The values of ‘r’ and ‘α\alpha ’ can be obtained by using the values of ‘a’ and ‘b’. Replacement should be done to get a final solution.