Solveeit Logo

Question

Mathematics Question on Integrals of Some Particular Functions

Here, [x][x] denotes the greatest integer less than or equal to xx . Given that f(x)=[x]+xf(x) = [x] + x . The value obtained when this function is integrated with respect to xx with lower limit as 32\frac{3}{2} and upper limit as 92\frac{9}{2} , is

A

1212

B

10.510.5

C

88

D

16.516.5

Answer

16.516.5

Explanation

Solution

The correct option is(D): 16.5

We have, f(x)=[x]+xf \left(x\right)=\left[x\right]+x
Now, 3/29/2f(x)dx\int\limits_{3/ 2}^{9/ 2}f\left(x\right)dx
=3/29/2[x]dx+3/29/2xdx=\int\limits^{9/ 2}_{ 3/ 2}\left[x\right]dx +\int\limits_{3 /2}^{9 /2} x\, dx
=3/221dx+232dx+343dx+49/24dx+3/292xdx=\int\limits_{3/ 2}^{2}1dx+\int\limits_{2}^{3}2dx+\int\limits_{3}^{4}3dx+\int\limits^{9 /2}_{4}4dx+\int\limits_{3/ 2}^{9 2} x\,dx
=[x]322+2[x]23+3[x]34+4[x]492+[x22]3/29/2=\left[x\right]_{3 2}^{2}+2\left[x\right]_{2}^{3}+3\left[x\right]_{3}^{4}+4\left[x\right]_{4}^{9 2}+ \left[\frac{x^{2}}{2}\right]_{3/ 2}^{9/ 2}
=(232)+2(32)+3(43)+4(924)=\left(2-\frac{3}{2}\right)+2\left(3-2\right)+3\left(4-3\right)+4\left(\frac{9}{2}-4\right)
+12[(92)2(32)2]+\frac{1}{2}\left[\left(\frac{9}{2}\right)^{2}-\left(\frac{3}{2}\right)^{2}\right]
=12+2+3+42+728=12+16=\frac{1}{2}+2+3+\frac{4}{2}+\frac{72}{8}=\frac{1}{2}+16
=16.5=16.5