Solveeit Logo

Question

Question: Henry’s law constant for \(C{O_2}\) in water is \(1.67 \times {10^8}Pa\)at 298K the quantity of \(C{...

Henry’s law constant for CO2C{O_2} in water is 1.67×108Pa1.67 \times {10^8}Paat 298K the quantity of CO2C{O_2} in 500 ml of soda water when packed under 2.5atm pressure is:
A. 0.082 mole B. 0.82 mole C. 0.41 mole D. 0.042 mole  {\text{A}}{\text{. 0}}{\text{.082 mole}} \\\ {\text{B}}{\text{. 0}}{\text{.82 mole}} \\\ {\text{C}}{\text{. 0}}{\text{.41 mole}} \\\ {\text{D}}{\text{. 0}}{\text{.042 mole}} \\\

Explanation

Solution

In this question first we find the mole fraction of CO2C{O_2} with the help of henry’s law. Then using the formula of mole fraction and applying the approximation on it to get the number of moles of CO2C{O_2}.

Formula used:
Henry’s law: p = KH×x{\text{p = }}{{\text{K}}_H} \times x; xsolvent=nsolventnsolvent+nsolute{x_{solvent}} = \dfrac{{{n_{solvent}}}}{{{n_{solvent}} + {n_{solute}}}}

Complete answer:
We know, according to Henry's law, the mass of a dissolved gas in a given volume of solvent at equilibrium is proportional to the partial pressure of the gas.
p = KH×x\Rightarrow {\text{p = }}{{\text{K}}_H} \times x (Equation 1)
Where,
p= partial pressure of gas
KH{{\text{K}}_H}= Henry’s constant(1.67×108Pa)(1.67 \times {10^8}Pa)
x= mole fraction of dissolved gas
Given: pressure of CO2C{O_2}=2.5atm
We know 1 atm=1.01325×105Pa1.01325 \times {10^5}Pa
Then,
Pressure of CO2C{O_2}=2.5×1.01325×105Pa2.5 \times 1.01325 \times {10^5}Pa
=2.533125×105Pa=2.533125 \times {10^5}Pa
Now, on applying the Henry’s law on CO2C{O_2} we get
p = KH×x x=pKH  \Rightarrow {\text{p = }}{{\text{K}}_H} \times x \\\ \Rightarrow x = \dfrac{{\text{p}}}{{{{\text{K}}_H}}} \\\
On putting the values in above equation, we get
x=2.533125×105Pa1.67×108Pa x=1.52×103  \Rightarrow x = \dfrac{{2.533125 \times {{10}^5}Pa}}{{1.67 \times {{10}^8}Pa}} \\\ \Rightarrow x = 1.52 \times {10^3} \\\
Therefore the mole fraction of CO2C{O_2} is 1.52×1031.52 \times {10^3}.
But we have 500ml of soda water so that
Volume of water=500ml
Density of water=1g/ml
We know, mass=volume×\timesdensity
And 500 ml of water=500g of water
Molar fraction of water=18g/mol
Now, the number of moles of water=Mass of waterMolar mass of water\dfrac{{{\text{Mass of water}}}}{{{\text{Molar mass of water}}}}
Then,
The number of moles of water=50018\dfrac{{500}}{{18}}
=27.78mol=27.78mol
Now, apply the formula of mole fraction in CO2C{O_2}, we get
x=nco2nco2+nH2O\Rightarrow x = \dfrac{{{n_{c{o_2}}}}}{{{n_{c{o_2}}} + {n_{{H_2}O}}}}
Since,
So,
x=nco2nH2O\Rightarrow x = \dfrac{{{n_{c{o_2}}}}}{{{n_{{H_2}O}}}}
On putting the values which we have in above equation, we get
nco2=27.78×1.52×103 nco2=0.042mole  \Rightarrow {n_{c{o_2}}} = 27.78 \times 1.52 \times {10^{ - 3}} \\\ \Rightarrow {n_{c{o_2}}} = 0.042mole \\\
Therefore, the moles of CO2C{O_2} is 0.042mole.

Hence, option D is correct.

Note: Whenever you get this type of question the key concept to solve this is to learn the concept of Henry’s law , its formula p = KH×x{\text{p = }}{{\text{K}}_H} \times x and mole fraction and its formula xsolvent=nsolventnsolvent+nsolute{x_{solvent}} = \dfrac{{{n_{solvent}}}}{{{n_{solvent}} + {n_{solute}}}}. And one more thing to be noted is that density of water is 1g/ml so mass of water is equal to volume of water.