Solveeit Logo

Question

Question: He equations of the directrices of the conic \(x^{2} + 2x - y^{2} + 5 = 0\) are...

He equations of the directrices of the conic

x2+2xy2+5=0x^{2} + 2x - y^{2} + 5 = 0 are

A

x=±1x = \pm 1

B

y=±2y = \pm 2

C

y=±2y = \pm \sqrt{2}

D

x=±3x = \pm \sqrt{3}

Answer

y=±2y = \pm \sqrt{2}

Explanation

Solution

(x+1)2y21+5=0(x + 1)^{2} - y^{2} - 1 + 5 = 0a2l2tan2φ+b2m2sec2φ+2ablmsecφtanφ=n2a^{2}l^{2}\tan^{2}\varphi + b^{2}m^{2}\sec^{2}\varphi + 2ablm\sec\varphi\tan\varphi = n^{2}

Equation of directrices of y2b2x2a2=1\frac{y^{2}}{b^{2}} - \frac{x^{2}}{a^{2}} = 1 are y=±bey = \pm \frac{b}{e}

Here b=2b = 2, altanφ+bmsecφ=nal\tan\varphi + bm\sec\varphi = - n. Hence, y=±22y = \pm \frac{2}{\sqrt{2}}y=±2y = \pm \sqrt{2}