Solveeit Logo

Question

Mathematics Question on Vector Algebra

u^\hat{u} and v^\hat{v} are unit vectors such that u^.v^=0r\hat{u}.\hat{v}=0\overrightarrow{r} is any vector coplanar with u^\hat{u} and v^\hat{v} the magnitude of the vector r×(u^×v^\overrightarrow{r}\times(\hat{u}\times\hat{v} is

A

0

B

1

C

|r\overrightarrow{r}|

D

2|r\overrightarrow{r}|

Answer

|r\overrightarrow{r}|

Explanation

Solution

rˉ×(uˉ×vˉ)=(λuˉ×μvˉ)×(uˉ×vˉ)\bar{r}\times\left(\bar{u}\times\bar{v}\right)=\left(\lambda\,\bar{u}\times\mu\,\bar{v}\right)\times\left(\bar{u} \times \bar{v}\right) =λμˉ×(uˉ×vˉ)+μvˉ×(uˉ×vˉ)=\lambda \bar{\mu} \times \left(\bar{u} \times\bar{v}\right)+\mu\,\bar{v} \times \left(\bar{u} \times \bar{v}\right) =λ[(uˉvˉ)uˉ(μˉuˉ)vˉ]+μ[(vˉvˉ)uˉ(uˉvˉ)vˉ]=\lambda \left[\left(\bar{u}\cdot\bar{v}\right)\bar{u}-\left(\bar{\mu}\cdot\bar{u}\right)\bar{v}\right]+\mu\left[\left(\bar{v}\cdot\bar{v}\right)\bar{u}-\left(\bar{u}\cdot\bar{v}\right)\bar{v}\right] =λ(0uˉ2vˉ)+μ(vˉ2uˉ0)=\lambda\left(0-\left|\bar{u}\right|^{2}\,\bar{v}\right)+\mu\left(\left|\bar{v}\right|^{2}\,\bar{u}-0\right) =λvˉruˉ=-\lambda\,\bar{v}-r\,\bar{u} rˉ×(uˉ×vˉ)=1r\therefore \left|\bar{r}\times\left(\bar{u} \times\bar{v}\right)\right|=1r