Solveeit Logo

Question

Question: \(\hat i\) and \(\hat j\) are unit vectors along \(x - axis\) and \(y - axis\) respectively. A) Wh...

i^\hat i and j^\hat j are unit vectors along xaxisx - axis and yaxisy - axis respectively.
A) What is the magnitude and direction of the vectors (i^+j^)\left( {\hat i + \hat j} \right) and (i^j^)\left( {\hat i - \hat j} \right) ?
B) What are the components of the vectors B=2i^+3j^\overrightarrow B = 2\hat i + 3\hat j along the direction of (i^+j^)\left( {\hat i + \hat j} \right) and (i^j^)\left( {\hat i - \hat j} \right) ?

Explanation

Solution

Use the value of i^\hat i and j^\hat j as 11 because they are unit vectors. Now, to find the direction, find the inverse of tan\tan .
For finding the component of vectors find the angle between the vectors B\vec B and (i^+j^)\left( {\hat i + \hat j} \right) and then find the product of the angle and vector B\vec B.

Complete step by step answer:
According to the question, we know that i^\hat i and j^\hat j are unit vectors along xaxisx - axis and yaxisy - axis respectively.
(a)
For finding the magnitude we use the expression –
A=a2+b2+c2\vec A = \sqrt {{a^2} + {b^2} + {c^2}}
Therefore, for calculating the magnitude of vector (i^+j^)\left( {\hat i + \hat j} \right) -
(i^)2+(j^)2\Rightarrow \sqrt {{{\left( {\hat i} \right)}^2} + {{\left( {\hat j} \right)}^2}}
We know that, i^.i^=1\hat i.\hat i = 1 and j^.j^=1\hat j.\hat j = 1
Therefore, magnitude of vector (i^+j^)\left( {\hat i + \hat j} \right) -
(1)2+(1)2=2\Rightarrow \sqrt {{{\left( 1 \right)}^2} + {{\left( 1 \right)}^2}} = \sqrt 2
Hence, the magnitude of the vector (i^+j^)\left( {\hat i + \hat j} \right) is 2\sqrt 2 .


Now,
tanθ=11 θ=tan1(1) θ=45  \tan \theta = \dfrac{1}{1} \\\ \theta = {\tan ^{ - 1}}\left( 1 \right) \\\ \theta = {45^ \circ } \\\
Therefore, the direction is 45{45^ \circ } to the xaxisx - axis.
Now, calculating the magnitude of vector (i^j^)\left( {\hat i - \hat j} \right) -
(1)2+(1)2=2\Rightarrow \sqrt {{{\left( 1 \right)}^2} + {{\left( { - 1} \right)}^2}} = \sqrt 2

Now,
tanθ=11 θ=tan1(1) θ=45  \tan \theta = - \dfrac{1}{1} \\\ \theta = {\tan ^{ - 1}}\left( { - 1} \right) \\\ \theta = - {45^ \circ } \\\
Hence, the direction of the vector (i^j^)\left( {\hat i - \hat j} \right) is 45 - {45^ \circ } with the xaxisx - axis.

(b)
From the question, it is given that –
B=2i^+3j^\overrightarrow B = 2\hat i + 3\hat j
Let,
a=i^+j^ b=i^j^  \vec a = \hat i + \hat j \\\ \vec b = \hat i - \hat j \\\
To get the component of B\vec B along the direction of a\vec a we have to find the angle between them –
So, we need to do this by their dot product –
B.a=Bacosθ cosθ=B.aBa(1)  \vec B.\vec a = \left| {\vec B} \right|\left| {\vec a} \right|\cos \theta \\\ \cos \theta = \dfrac{{\vec B.\vec a}}{{\left| {\vec B} \right|\left| {\vec a} \right|}} \cdots \left( 1 \right) \\\
Magnitude of vector B\vec B -
B=(2)2+(3)2=4+9=13units\left| {\vec B} \right| = \sqrt {{{\left( 2 \right)}^2} + {{\left( 3 \right)}^2}} = \sqrt {4 + 9} = \sqrt {13} units
Magnitude of vector a\vec a -
a=1+1=2\left| {\vec a} \right| = \sqrt {1 + 1} = \sqrt 2
Putting all the values needed for finding the component in equation (1)\left( 1 \right), we get –
cosθ=(2i^+3j^).(i^+j^)13×2=2+326 cosθ=526  \therefore \cos \theta = \dfrac{{\left( {2\hat i + 3\hat j} \right).\left( {\hat i + \hat j} \right)}}{{\sqrt {13} \times \sqrt 2 }} = \dfrac{{2 + 3}}{{\sqrt {26} }} \\\ \cos \theta = \dfrac{5}{{\sqrt {26} }} \\\
Hence, the component of B\vec B along direction of a\vec a is 526(2i^+3j^)\dfrac{5}{{\sqrt {26} }}\left( {2\hat i + 3\hat j} \right)
Similarly,
To get the component of B\vec B along the direction of b\vec b we have to find the angle between them –
So, we need to do this by their dot product –
B.b=Bbcosθ cosθ=B.bBb(2)  \vec B.\vec b = \left| {\vec B} \right|\left| {\vec b} \right|\cos \theta \\\ \cos \theta = \dfrac{{\vec B.\vec b}}{{\left| {\vec B} \right|\left| {\vec b} \right|}} \cdots \left( 2 \right) \\\
Magnitude of vector b\vec b -
b=1+1=2\left| {\vec b} \right| = \sqrt {1 + 1} = \sqrt 2
Putting all the values needed for finding the component in equation (2)\left( 2 \right), we get –
cosθ=(2i^+3j^).(i^j^)13×2=2326 cosθ=126  \therefore \cos \theta = \dfrac{{\left( {2\hat i + 3\hat j} \right).\left( {\hat i - \hat j} \right)}}{{\sqrt {13} \times \sqrt 2 }} = \dfrac{{2 - 3}}{{\sqrt {26} }} \\\ \cos \theta = \dfrac{{ - 1}}{{\sqrt {26} }} \\\
Hence, the component of B\vec B along direction of a\vec a is 126(2i^+3j^)\dfrac{{ - 1}}{{\sqrt {26} }}\left( {2\hat i + 3\hat j} \right).

Note: - The magnitude of a vector is the length of the vector. The magnitude of the vector a\vec a is denoted as a\left| {\vec a} \right|.
Formulas for the magnitude of vectors in two dimensions in terms of their coordinates are –
If a=a1i^+a2j^\vec a = {a_1}\hat i + {a_2}\hat j then, magnitude is –
a=a12+a22\left| {\vec a} \right| = \sqrt {a_1^2 + a_2^2}