Solveeit Logo

Question

Physics Question on Nuclei

Half-life of a radioactive substance is 2020 minute. The time between 20%20\% and 80%80\% decay will be :

A

20 min

B

30 min

C

40 min

D

25 min

Answer

40 min

Explanation

Solution

Given that the half-life of a radioactive substance is 20min.20\, min . So, t1/2=20mint_{1 / 2}=20\, min.
For 20%20 \% decay, we have 80%80 \% of the substance left, hence
80N0100=N0eλt20...(i)\frac{80\, N_{0}}{100}=N_{0} e^{-\lambda t_{20}}\,\,\,...(i)
where N0=N_{0}= initial undecayed substance and t20t_{20} is the time taken for 20%20 \% decay.
For 80%80 \% decay, we have 20%20 \% of the substance left, hence
20N0100=N0eλt80...(ii)\frac{20 N_{0}}{100}=N_{0} e^{-\lambda t_{80}}\,\,\,...(ii)
Dividing E (i) and E (ii), we get
4=eλ(t80t20)4 =e^{\lambda\left(t_{80}-t_{20}\right)}
ln4=λ(t80t20)\Rightarrow \ln 4 =\lambda\left(t_{80}-t_{20}\right)
(taking log on both sides)
2ln2=0.693t1/2(t80t20)\Rightarrow 2 \ln 2=\frac{0.693}{t_{1 / 2}}\left(t_{80}-t_{20}\right)
t80t20=2×t1/2=40min\Rightarrow t_{80}-t_{20}=2 \times t_{1 / 2}=40\, min