Solveeit Logo

Question

Physics Question on deccay rate

Half-life for radioactive 14C^{14}C is 5760 yr. In how many years, 200 mg of 14C^{14}C will be reduced to 25 mg?

A

5760 yr

B

11520 yr

C

17280 yr

D

23040 yr

Answer

17280 yr

Explanation

Solution

Half-life of radioactive
t1/225760yr,[R]0=200mgt_{1/2}2 5760 yr, [R]_0 = 200 mg
\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, [R] = 25 mg
Rate constant (k) =0.6932t1/2=0.69325760yr1\frac{0.6932}{t_{1/2}}=\frac{0.6932}{5760}yr^{-1}
k=2.303tlogR0R\therefore\, \, \, \, \, \, \, \, \, \, \, \, k=\frac{2.303}{t}log \frac{| R |_0}{| R |}
(R0\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, (R_0 = 200 mg inital amount)
0.6932t=2.303tlog20025\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \frac{0.6932}{t}=\frac{2.303}{t}log\frac{200}{25}
\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, (R = 25 mg reduced amount)
=2.303t\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, =\frac{2.303}{t} log 8
0.69325760=2.303t×0.9030\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \frac{0.6932}{5760}=\frac{2.303}{t}\times 0.9030
t=5760×2.303×0.90300.6932\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, t=\frac{5760 \times 2.303 \times 0.9030}{0.6932}
=11978.540.6932=17280yr\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, =\frac{11978.54}{0.6932}=17280 yr