Solveeit Logo

Question

Question: hA square of side *x* m lies in the *x-y* plane in a region, where the magnetic field is given by \...

hA square of side x m lies in the x-y plane in a region, where the magnetic field is given by B=B0(3i^+4j^+5k^)\overrightarrow { \mathrm { B } } = \mathrm { B } _ { 0 } ( 3 \hat { \mathrm { i } } + 4 \hat { \mathrm { j } } + 5 \hat { \mathrm { k } } ) T, where B0 is constant. The magnitude of flux passing through the square is

A

5B0 x2 Wb

B

2*Bq x2* Wb

C

2B0 x2 Wb

D

B0 x2 Wb

Answer

5B0 x2 Wb

Explanation

Solution

Here , A=x2k^m2\overrightarrow { \mathrm { A } } = \mathrm { x } ^ { 2 } \hat { \mathrm { k } } \mathrm { m } ^ { 2 } and

B=B0(3i^+4j^+5k^)T\overrightarrow { \mathrm { B } } = \mathrm { B } _ { 0 } ( 3 \hat { \mathrm { i } } + 4 \hat { \mathrm { j } } + 5 \hat { \mathrm { k } } ) \mathrm { T }

As ϕ=BA=B0(3i^+4j^+5k^)x2k^\phi = \overrightarrow { \mathrm { B } } \cdot \overrightarrow { \mathrm { A } } = \mathrm { B } _ { 0 } ( 3 \hat { \mathrm { i } } + 4 \hat { \mathrm { j } } + 5 \hat { \mathrm { k } } ) \cdot x ^ { 2 } \hat { \mathrm { k } }

ϕ=5 B0x2 Wb\therefore \phi = 5 \mathrm {~B} _ { 0 } \mathrm { x } ^ { 2 } \mathrm {~Wb}