Question
Question: Find the coordinates of the centres and the radii of the circles whose equations are: (i) $2x^2 + 2y...
Find the coordinates of the centres and the radii of the circles whose equations are: (i) 2x2+2y2=3x−5y+7 (ii) x2+y2−4x−8y=41 (iii) 1+m2(x2+y2)−2cx−2mcy=0

(i) Center: (43,−45), Radius: 4310 (ii) Center: (2,4), Radius: 61 (iii) Center: (1+m2c,1+m2mc), Radius: ∣c∣
Solution
The general equation of a circle is x2+y2+2gx+2fy+c=0, for which the center is (−g,−f) and the radius is r=g2+f2−c.
To solve, each given equation is transformed into the standard form x2+y2+2gx+2fy+c=0. This is achieved by ensuring the coefficients of x2 and y2 are 1, and then rearranging terms. The values of g, f, and c are identified to calculate the center (−g,−f) and radius g2+f2−c.
(i) 2x2+2y2=3x−5y+7 Divide by 2: x2+y2=23x−25y+27 Rearrange to standard form: x2+y2−23x+25y−27=0 Comparing with x2+y2+2gx+2fy+c=0: 2g=−23⟹g=−43 2f=25⟹f=45 c=−27 Center: (−g,−f)=(43,−45) Radius: r=g2+f2−c=(−43)2+(45)2−(−27) r=169+1625+1656=1690=4310
(ii) x2+y2−4x−8y=41 Rearrange to standard form: x2+y2−4x−8y−41=0 Comparing with x2+y2+2gx+2fy+c=0: 2g=−4⟹g=−2 2f=−8⟹f=−4 c=−41 Center: (−g,−f)=(2,4) Radius: r=g2+f2−c=(−2)2+(−4)2−(−41) r=4+16+41=61
(iii) 1+m2(x2+y2)−2cx−2mcy=0 Divide by 1+m2: x2+y2−1+m22cx−1+m22mcy=0 Comparing with x2+y2+2gx+2fy+c=0: 2g=−1+m22c⟹g=−1+m2c 2f=−1+m22mc⟹f=−1+m2mc c=0 Center: (−g,−f)=(1+m2c,1+m2mc) Radius: r=g2+f2−c=(−1+m2c)2+(−1+m2mc)2−0 r=1+m2c2+1+m2m2c2=1+m2c2(1+m2)=c2=∣c∣