Solveeit Logo

Question

Question: Find the coordinates of the centres and the radii of the circles whose equations are: (i) $2x^2 + 2y...

Find the coordinates of the centres and the radii of the circles whose equations are: (i) 2x2+2y2=3x5y+72x^2 + 2y^2 = 3x - 5y + 7 (ii) x2+y24x8y=41x^2 + y^2 - 4x - 8y = 41 (iii) 1+m2(x2+y2)2cx2mcy=0\sqrt{1+ m^2} (x^2 + y^2) - 2cx - 2mcy = 0

Answer

(i) Center: (34,54)\left(\frac{3}{4}, -\frac{5}{4}\right), Radius: 3104\frac{3\sqrt{10}}{4} (ii) Center: (2,4)(2, 4), Radius: 61\sqrt{61} (iii) Center: (c1+m2,mc1+m2)\left(\frac{c}{\sqrt{1+ m^2}}, \frac{mc}{\sqrt{1+ m^2}}\right), Radius: c|c|

Explanation

Solution

The general equation of a circle is x2+y2+2gx+2fy+c=0x^2 + y^2 + 2gx + 2fy + c = 0, for which the center is (g,f)(-g, -f) and the radius is r=g2+f2cr = \sqrt{g^2 + f^2 - c}.

To solve, each given equation is transformed into the standard form x2+y2+2gx+2fy+c=0x^2 + y^2 + 2gx + 2fy + c = 0. This is achieved by ensuring the coefficients of x2x^2 and y2y^2 are 1, and then rearranging terms. The values of gg, ff, and cc are identified to calculate the center (g,f)(-g, -f) and radius g2+f2c\sqrt{g^2 + f^2 - c}.

(i) 2x2+2y2=3x5y+72x^2 + 2y^2 = 3x - 5y + 7 Divide by 2: x2+y2=32x52y+72x^2 + y^2 = \frac{3}{2}x - \frac{5}{2}y + \frac{7}{2} Rearrange to standard form: x2+y232x+52y72=0x^2 + y^2 - \frac{3}{2}x + \frac{5}{2}y - \frac{7}{2} = 0 Comparing with x2+y2+2gx+2fy+c=0x^2 + y^2 + 2gx + 2fy + c = 0: 2g=32    g=342g = -\frac{3}{2} \implies g = -\frac{3}{4} 2f=52    f=542f = \frac{5}{2} \implies f = \frac{5}{4} c=72c = -\frac{7}{2} Center: (g,f)=(34,54)(-g, -f) = \left(\frac{3}{4}, -\frac{5}{4}\right) Radius: r=g2+f2c=(34)2+(54)2(72)r = \sqrt{g^2 + f^2 - c} = \sqrt{\left(-\frac{3}{4}\right)^2 + \left(\frac{5}{4}\right)^2 - \left(-\frac{7}{2}\right)} r=916+2516+5616=9016=3104r = \sqrt{\frac{9}{16} + \frac{25}{16} + \frac{56}{16}} = \sqrt{\frac{90}{16}} = \frac{3\sqrt{10}}{4}

(ii) x2+y24x8y=41x^2 + y^2 - 4x - 8y = 41 Rearrange to standard form: x2+y24x8y41=0x^2 + y^2 - 4x - 8y - 41 = 0 Comparing with x2+y2+2gx+2fy+c=0x^2 + y^2 + 2gx + 2fy + c = 0: 2g=4    g=22g = -4 \implies g = -2 2f=8    f=42f = -8 \implies f = -4 c=41c = -41 Center: (g,f)=(2,4)(-g, -f) = (2, 4) Radius: r=g2+f2c=(2)2+(4)2(41)r = \sqrt{g^2 + f^2 - c} = \sqrt{(-2)^2 + (-4)^2 - (-41)} r=4+16+41=61r = \sqrt{4 + 16 + 41} = \sqrt{61}

(iii) 1+m2(x2+y2)2cx2mcy=0\sqrt{1+ m^2} (x^2 + y^2) - 2cx - 2mcy = 0 Divide by 1+m2\sqrt{1+ m^2}: x2+y22c1+m2x2mc1+m2y=0x^2 + y^2 - \frac{2c}{\sqrt{1+ m^2}}x - \frac{2mc}{\sqrt{1+ m^2}}y = 0 Comparing with x2+y2+2gx+2fy+c=0x^2 + y^2 + 2gx + 2fy + c = 0: 2g=2c1+m2    g=c1+m22g = -\frac{2c}{\sqrt{1+ m^2}} \implies g = -\frac{c}{\sqrt{1+ m^2}} 2f=2mc1+m2    f=mc1+m22f = -\frac{2mc}{\sqrt{1+ m^2}} \implies f = -\frac{mc}{\sqrt{1+ m^2}} c=0c = 0 Center: (g,f)=(c1+m2,mc1+m2)(-g, -f) = \left(\frac{c}{\sqrt{1+ m^2}}, \frac{mc}{\sqrt{1+ m^2}}\right) Radius: r=g2+f2c=(c1+m2)2+(mc1+m2)20r = \sqrt{g^2 + f^2 - c} = \sqrt{\left(-\frac{c}{\sqrt{1+ m^2}}\right)^2 + \left(-\frac{mc}{\sqrt{1+ m^2}}\right)^2 - 0} r=c21+m2+m2c21+m2=c2(1+m2)1+m2=c2=cr = \sqrt{\frac{c^2}{1+ m^2} + \frac{m^2c^2}{1+ m^2}} = \sqrt{\frac{c^2(1+m^2)}{1+m^2}} = \sqrt{c^2} = |c|