Solveeit Logo

Question

Question: Length of the latus rectum of the parabola $25[(x - 2)^2 + (y - 3)^2] = (3x-4y + 7)^2$ is-...

Length of the latus rectum of the parabola 25[(x2)2+(y3)2]=(3x4y+7)225[(x - 2)^2 + (y - 3)^2] = (3x-4y + 7)^2 is-

A

4

B

2

C

1/5

D

2/5

Answer

2/5

Explanation

Solution

The given equation is 25[(x2)2+(y3)2]=(3x4y+7)225[(x - 2)^2 + (y - 3)^2] = (3x-4y + 7)^2. This can be rewritten as: 5(x2)2+(y3)2=3x4y+75 \sqrt{(x - 2)^2 + (y - 3)^2} = |3x-4y + 7| The term (x2)2+(y3)2\sqrt{(x - 2)^2 + (y - 3)^2} is the distance from a point (x,y)(x,y) to the point (2,3)(2,3). The distance from a point (x,y)(x,y) to the line 3x4y+7=03x-4y+7=0 is given by d=3x4y+732+(4)2=3x4y+75d = \frac{|3x-4y+7|}{\sqrt{3^2+(-4)^2}} = \frac{|3x-4y+7|}{5}. Thus, 3x4y+7=5d|3x-4y+7| = 5d. Substituting this into the equation, we get: 5(x2)2+(y3)2=5d5 \sqrt{(x - 2)^2 + (y - 3)^2} = 5d (x2)2+(y3)2=d\sqrt{(x - 2)^2 + (y - 3)^2} = d This equation states that the distance from the point (x,y)(x,y) to the point (2,3)(2,3) is equal to the distance from the point (x,y)(x,y) to the line 3x4y+7=03x-4y+7=0. This is the definition of a parabola where the focus is (2,3)(2,3) and the directrix is 3x4y+7=03x-4y+7=0.

For a parabola, the distance from the focus to the directrix is 2a2a, where aa is the distance from the vertex to the focus (or vertex to the directrix). The length of the latus rectum is 4a4a.

The distance from the focus (h,k)=(2,3)(h,k) = (2,3) to the directrix Ax+By+C=0Ax+By+C=0 where A=3,B=4,C=7A=3, B=-4, C=7 is: 2a=Ah+Bk+CA2+B2=3(2)4(3)+732+(4)22a = \frac{|Ah+Bk+C|}{\sqrt{A^2+B^2}} = \frac{|3(2) - 4(3) + 7|}{\sqrt{3^2 + (-4)^2}} 2a=612+79+16=125=152a = \frac{|6 - 12 + 7|}{\sqrt{9 + 16}} = \frac{|1|}{\sqrt{25}} = \frac{1}{5}

The length of the latus rectum is 4a=2×(2a)=2×15=254a = 2 \times (2a) = 2 \times \frac{1}{5} = \frac{2}{5}.