Solveeit Logo

Question

Question: Let the expression inside the 9th root be $E$. $E = 4\sin^4x-6\sin^2x+2-2\cos^2x-\frac{1}{2}\cos4x-x...

Let the expression inside the 9th root be EE. E=4sin4x6sin2x+22cos2x12cos4xx9E = 4\sin^4x-6\sin^2x+2-2\cos^2x-\frac{1}{2}\cos4x-x^9 Using trigonometric identities: cos2x=1sin2x\cos^2x = 1 - \sin^2x sin2x=1cos2x2\sin^2x = \frac{1-\cos2x}{2} cos4x=2cos22x1\cos4x = 2\cos^22x - 1

Substitute cos2x=1sin2x\cos^2x = 1-\sin^2x into EE: E=4sin4x6sin2x+22(1sin2x)12cos4xx9E = 4\sin^4x-6\sin^2x+2-2(1-\sin^2x)-\frac{1}{2}\cos4x-x^9 E=4sin4x4sin2x12cos4xx9E = 4\sin^4x-4\sin^2x-\frac{1}{2}\cos4x-x^9

Substitute sin2x=1cos2x2\sin^2x = \frac{1-\cos2x}{2} and cos4x=2cos22x1\cos4x = 2\cos^22x-1: 4sin4x=4(1cos2x2)2=12cos2x+cos22x4\sin^4x = 4\left(\frac{1-\cos2x}{2}\right)^2 = 1-2\cos2x+\cos^22x 4sin2x=4(1cos2x2)=22cos2x4\sin^2x = 4\left(\frac{1-\cos2x}{2}\right) = 2-2\cos2x

Substitute these into EE: E=(12cos2x+cos22x)(22cos2x)12(2cos22x1)x9E = (1-2\cos2x+\cos^22x) - (2-2\cos2x) - \frac{1}{2}(2\cos^22x-1) - x^9 E=12cos2x+cos22x2+2cos2xcos22x+12x9E = 1-2\cos2x+\cos^22x - 2+2\cos2x - \cos^22x+\frac{1}{2} - x^9 E=(12+12)+(2cos2x+2cos2x)+(cos22xcos22x)x9E = (1-2+\frac{1}{2}) + (-2\cos2x+2\cos2x) + (\cos^22x-\cos^22x) - x^9 E=12x9E = -\frac{1}{2} - x^9

Thus, the function simplifies to g(x)=(12x9)1/9g(x) = \left(-\frac{1}{2} - x^9\right)^{1/9}.

Let y=g(2025)y = g(2025). Then y=(1220259)1/9y = \left(-\frac{1}{2} - 2025^9\right)^{1/9}, which implies y9=1220259y^9 = -\frac{1}{2} - 2025^9. Now, we evaluate g(g(2025))=g(y)g(g(2025)) = g(y): g(y)=(12y9)1/9g(y) = \left(-\frac{1}{2} - y^9\right)^{1/9} Substitute the expression for y9y^9: g(y)=(12(1220259))1/9g(y) = \left(-\frac{1}{2} - \left(-\frac{1}{2} - 2025^9\right)\right)^{1/9} g(y)=(12+12+20259)1/9g(y) = \left(-\frac{1}{2} + \frac{1}{2} + 2025^9\right)^{1/9} g(y)=(20259)1/9=2025g(y) = \left(2025^9\right)^{1/9} = 2025.

The sum of digits of g(g(2025))g(g(2025)) is the sum of digits of 2025. Sum of digits = 2+0+2+5=92 + 0 + 2 + 5 = 9.

  1. Let A=[2003]A = \begin{bmatrix} 2 & 0 \\ 0 & -3 \end{bmatrix}, B=[0310]B = \begin{bmatrix} 0 & 3 \\ 1 & 0 \end{bmatrix} and

X=[cosxsinxsinxcosx]X = \begin{bmatrix} cosx & -sinx \\ sinx & cosx \end{bmatrix}. If P=AXBTP = AXB^T and

Q=BTXTAQ = B^TX^TA, then number of positive integral divisors of det (PQ)(PQ) is

A

9

B

15

C

24

D

30

Answer

The question contains two independent problems. The first problem asks for the sum of the digits of g(g(2025))g(g(2025)), which is 9. The second problem asks for the number of positive integral divisors of det(PQ)\det(PQ), which is 15.

Explanation

Solution

Problem 1: The function g(x)g(x) simplifies to g(x)=(12x9)1/9g(x) = \left(-\frac{1}{2} - x^9\right)^{1/9}. Evaluating g(g(2025))g(g(2025)) results in 2025. The sum of the digits of 2025 is 2+0+2+5=92+0+2+5 = 9.

Problem 2: Given matrices A=[2003]A = \begin{bmatrix} 2 & 0 \\ 0 & -3 \end{bmatrix}, B=[0310]B = \begin{bmatrix} 0 & 3 \\ 1 & 0 \end{bmatrix}, and X=[cosxsinxsinxcosx]X = \begin{bmatrix} \cos x & -\sin x \\ \sin x & \cos x \end{bmatrix}. det(A)=6\det(A) = -6 det(B)=3\det(B) = -3 det(X)=1\det(X) = 1

P=AXBT    det(P)=det(A)det(X)det(BT)=(6)(1)(3)=18P = AXB^T \implies \det(P) = \det(A)\det(X)\det(B^T) = (-6)(1)(-3) = 18. Q=BTXTA    det(Q)=det(BT)det(XT)det(A)=(3)(1)(6)=18Q = B^TX^TA \implies \det(Q) = \det(B^T)\det(X^T)\det(A) = (-3)(1)(-6) = 18.

det(PQ)=det(P)det(Q)=18×18=182\det(PQ) = \det(P)\det(Q) = 18 \times 18 = 18^2. The prime factorization of 18 is 2×322 \times 3^2. So, 182=(2×32)2=22×3418^2 = (2 \times 3^2)^2 = 2^2 \times 3^4. The number of positive integral divisors is (2+1)(4+1)=3×5=15(2+1)(4+1) = 3 \times 5 = 15.