Solveeit Logo

Question

Question: Gravitational pressure is the pressure that develops in solid objects due to the gravitational force...

Gravitational pressure is the pressure that develops in solid objects due to the gravitational forces between different regions inside the object. If the earth is a uniform sphere with density ρ=5.5×103kg/m3\rho = 5.5 \times 10^3 kg/m^3 and radius R=6400kmR = 6400km, find the approximate gravitational pressure at its centre.

A

1.9×1081.9 \times 10^8 atm

B

1.7×1061.7 \times 10^6 atm

C

2.1×1032.1 \times 10^3 atm

D

0.6×1050.6 \times 10^5 atm

Answer

1.7 x 10^6 atm

Explanation

Solution

To find the gravitational pressure at the Earth's center, we can model the Earth as a uniform sphere. The pressure at a distance rr from the center of a uniform sphere of radius RR and density ρ\rho is given by the formula derived from hydrostatic equilibrium:

P(r)=23πGρ2(R2r2)P(r) = \frac{2}{3}\pi G \rho^2 (R^2 - r^2)

At the center of the Earth, r=0r=0. So, the pressure at the center P(0)P(0) is:

P(0)=23πGρ2R2P(0) = \frac{2}{3}\pi G \rho^2 R^2

Given values:

  • Density ρ=5.5×103 kg/m3\rho = 5.5 \times 10^3 \text{ kg/m}^3
  • Radius R=6400 km=6.4×106 mR = 6400 \text{ km} = 6.4 \times 10^6 \text{ m}
  • Gravitational constant G=6.67×1011 N m2/kg2G = 6.67 \times 10^{-11} \text{ N m}^2/\text{kg}^2

Substitute the values into the formula:

P(0)=23×π×(6.67×1011 N m2/kg2)×(5.5×103 kg/m3)2×(6.4×106 m)21.7×106 atmP(0) = \frac{2}{3} \times \pi \times (6.67 \times 10^{-11} \text{ N m}^2/\text{kg}^2) \times (5.5 \times 10^3 \text{ kg/m}^3)^2 \times (6.4 \times 10^6 \text{ m})^2 \approx 1.7 \times 10^6 \text{ atm}