Solveeit Logo

Question

Physics Question on Gravitation

Gravitational acceleration on the surface of a planet is 611\frac{ \sqrt{6}}{11} where g is the gravitational acceleration on the surface of the earth. The average mass density of the planet is 1/3 times that of the earth. If the escape speed on the surface of the earth is taken to be 11 kms1^{-1}, the escape speed on the surface of the planet in kms1^{1} will be.

A

GMR\frac{-GM}{R}

B

GM2R\frac{-GM}{2R}

C

2GM3R\frac{-2GM}{3R}

D

2GMR\frac{-2GM}{R}

Answer

2GM3R\frac{-2GM}{3R}

Explanation

Solution

g = GMR2=G(43πR3)ρR2\frac{GM}{R^2} = \frac{G (\frac{4}{3} \pi R^3) \rho}{R^2} or gρRorRgρ\, \, \, \, \, \, \, \, \, \, g \propto \rho R \, or \, R \propto \frac{g}{\rho} or vegR \, \, \, \, \, \, \, \, \, \, \, \, \, v_e \propto \sqrt{gR} or veρgR \, \, \, \, \, \, \, \, \, \, \, \, \, v_e \rho \sqrt{gR} or veg×gρg2ρ\, \, \, \, \, \, \, \, \, v_e \propto \sqrt{g \times \frac{g}{\rho} \propto \sqrt{\frac{g^2}{\rho}}} (ve)plant=(11kms1)6121×32=3kms1\therefore \, \, \, \, \, \, \, \, \, (v_e)_{plant} = (11kms^{-1}) \sqrt{\frac{6}{121} \times \frac{3}{2}}= 3 kms^{-1} \therefore The correct answer is 3