Solveeit Logo

Question

Question: $g(n) = \int_0^{n^2+n+1} e^{x/2-\lfloor x/2 \rfloor}(\frac{x}{2}-\lfloor\frac{x}{2}\rfloor)d(x-\lflo...

g(n)=0n2+n+1ex/2x/2(x2x2)d(xx);nN then g(n)g(n) = \int_0^{n^2+n+1} e^{x/2-\lfloor x/2 \rfloor}(\frac{x}{2}-\lfloor\frac{x}{2}\rfloor)d(x-\lfloor x\rfloor); n \in N \text{ then } g(n)

Answer

g(n)=n^2+n+2-e^{\frac{1}{2}}.

Explanation

Solution

We start with

g(n)=0n2+n+1ex/2x/2(x2x/2)d(xx),g(n)=\int_0^{n^2+n+1} e^{x/2-\lfloor x/2 \rfloor}\Bigl(\frac{x}{2}-\lfloor x/2 \rfloor\Bigr)d\Bigl(x-\lfloor x\rfloor\Bigr),

where we note that for any real number xx,

x2x/2={x/2},andxx={x}.\frac{x}{2}-\lfloor x/2\rfloor=\{x/2\},\quad \text{and} \quad x-\lfloor x\rfloor=\{x\}.

Thus, the integral becomes

g(n)=0n2+n+1e{x/2}{x/2}  d{x}.g(n)=\int_0^{n^2+n+1} e^{\{x/2\}}\,\{x/2\}\;d\{x\}.

Step 1. Partitioning the integral

Since the fractional part {x}\{x\} resets at every integer, we split the integration interval [0,n2+n+1][0, n^2+n+1] into unit intervals. Write x=m+sx=m+s where m=xm=\lfloor x\rfloor (an integer) and s={x}[0,1)s=\{x\}\in[0,1). On each interval, dx=dsdx=d s (because away from the jump points, d{x}=dsd\{x\}=ds).

Step 2. Behavior of {x/2}\{x/2\} based on parity of mm

Write

x2=m+s2=m2+s2.\frac{x}{2}=\frac{m+s}{2}=\frac{m}{2}+\frac{s}{2}.

The floor of x2\frac{x}{2} depends on whether mm is even or odd.

  • Case 1: m=2km=2k (even).
    Then,

    x2=k+s2x/2=k,\frac{x}{2}= k+\frac{s}{2}\quad\Rightarrow\quad \lfloor x/2\rfloor =k,

    so that

    {x/2}=s2.\{x/2\}=\frac{s}{2}.
  • Case 2: m=2k+1m=2k+1 (odd).
    Then,

    x2=k+12+s2x/2=k,\frac{x}{2}= k+\frac{1}{2}+\frac{s}{2}\quad\Rightarrow\quad \lfloor x/2\rfloor = k,

    because 12+s2[0.5,1)\frac{1}{2}+\frac{s}{2}\in[0.5,1) for s[0,1)s\in[0,1). Hence,

    {x/2}=12+s2=1+s2.\{x/2\}=\frac{1}{2}+\frac{s}{2}=\frac{1+s}{2}.

Let IevenI_{\text{even}} be the integral over one unit interval for even mm and IoddI_{\text{odd}} for odd mm:

Ieven=01es2(s2)ds,Iodd=01e1+s2(1+s2)ds.I_{\text{even}}=\int_0^1 e^{\frac{s}{2}}\left(\frac{s}{2}\right)ds,\quad I_{\text{odd}}=\int_0^1 e^{\frac{1+s}{2}}\left(\frac{1+s}{2}\right)ds.

Step 3. Calculating IevenI_{\text{even}}

Write

Ieven=1201ses/2ds.I_{\text{even}}=\frac{1}{2}\int_0^1 s\,e^{s/2}ds.

Use integration by parts: Let u=su=s so that du=dsdu=ds and dv=es/2dsdv=e^{s/2}ds with v=2es/2v=2e^{s/2}. Then,

ses/2ds=2ses/22es/2ds=2ses/24es/2+C.\int s\,e^{s/2}ds = 2s\,e^{s/2} - \int 2e^{s/2}ds=2s\,e^{s/2} - 4e^{s/2}+C.

Evaluating from 00 to 11:

01ses/2ds=[2e1/24e1/2+4][04+4]=2e1/2+4.\int_0^1 s\,e^{s/2}ds = \Bigl[2e^{1/2}-4e^{1/2}+4\Bigr]-[0-4+4]= -2e^{1/2}+4.

Thus,

Ieven=12(2e1/2+4)=2e1/2.I_{\text{even}}=\frac{1}{2}(-2e^{1/2}+4)=2-e^{1/2}.

Step 4. Calculating IoddI_{\text{odd}}

We have

Iodd=1201e1+s2(1+s)ds.I_{\text{odd}}=\frac{1}{2}\int_0^1 e^{\frac{1+s}{2}}(1+s)ds.

Factor out e1/2e^{1/2}:

Iodd=e1/2201(1+s)es/2ds.I_{\text{odd}}=\frac{e^{1/2}}{2}\int_0^1 (1+s)e^{s/2}ds.

Let

J=01(1+s)es/2ds=01es/2ds+01ses/2ds.J=\int_0^1 (1+s)e^{s/2}ds = \int_0^1 e^{s/2}ds + \int_0^1 s\,e^{s/2}ds.

First,

01es/2ds=2(e1/21).\int_0^1 e^{s/2}ds=2(e^{1/2}-1).

We already found 01ses/2ds=2e1/2+4\int_0^1 s\,e^{s/2}ds= -2e^{1/2}+4. Thus,

J=2(e1/21)+(2e1/2+4)=2.J=2(e^{1/2}-1) + (-2e^{1/2}+4)=2.

It follows that

Iodd=e1/222=e1/2.I_{\text{odd}}=\frac{e^{1/2}}{2}\cdot 2=e^{1/2}.

Step 5. Summing up over all intervals

The integration variable xx goes from 00 to n2+n+1n^2+n+1. There are

M=n2+n+1M=n^2+n+1

unit intervals and the integration is a sum over these. Since the measure is dsds on each unit interval, we only add contributions on each full interval. In the range 0,1,2,,M10,1,2,\dots, M-1, the number of even integers is M+12\frac{M+1}{2} and odd integers is M12\frac{M-1}{2} (since MM is odd because n(n+1)n(n+1) is even).

Thus,

g(n)=M+12Ieven+M12Iodd,g(n)=\frac{M+1}{2}I_{\text{even}}+\frac{M-1}{2}I_{\text{odd}},

with Ieven=2e1/2I_{\text{even}}=2-e^{1/2} and Iodd=e1/2I_{\text{odd}}=e^{1/2}. Substitute:

g(n)=M+12(2e1/2)+M12e1/2.g(n)=\frac{M+1}{2}(2-e^{1/2})+\frac{M-1}{2}e^{1/2}.

Simplify:

g(n)=12[(M+1)(2e1/2)+(M1)e1/2].g(n)=\frac{1}{2}\Bigl[(M+1)(2-e^{1/2})+(M-1)e^{1/2}\Bigr].

Expanding,

(M+1)(2e1/2)=2M+2Me1/2e1/2,(M+1)(2-e^{1/2})=2M+2 - M e^{1/2} - e^{1/2}, (M1)e1/2=Me1/2e1/2.(M-1)e^{1/2}=M e^{1/2}- e^{1/2}.

Adding these:

2M+2Me1/2e1/2+Me1/2e1/2=2M+22e1/2.2M+2 - M e^{1/2} - e^{1/2} + M e^{1/2}- e^{1/2}=2M+2-2e^{1/2}.

Thus,

g(n)=12[2M+22e1/2]=M+1e1/2.g(n)=\frac{1}{2}[2M+2-2e^{1/2}]=M+1-e^{1/2}.

Recalling M=n2+n+1M=n^2+n+1, we obtain:

g(n)=n2+n+1+1e1/2=n2+n+2e1/2.g(n)=n^2+n+1+1-e^{1/2}=n^2+n+2-e^{1/2}.