Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

Given z=q+ir1+pz=\frac{q+ir}{1+p} , then p+iq1+r=1+iz1iz\frac{p+iq}{1+r} =\frac{1+iz}{1-iz} if

A

p2+q2+r2=1p^2+q^2+r^2=1

B

p2+q2+r2=2p^2+q^2+r^2=2

C

p2+q2r2=1p^2+q^2-r^2=1

D

none of these

Answer

p2+q2+r2=1p^2+q^2+r^2=1

Explanation

Solution

We have z=q+ir1+pz=\frac{q+ir}{1+p} iz1=r+iq1+p\therefore \frac{iz}{1}=\frac{-r+iq}{1+p} 1+iz1iz=1+pr+iq1+p+riq\therefore \frac{1+iz}{1-iz}=\frac{1+p-r+iq}{1+p+r-iq} p+iq1+r=1+iz1iz\therefore \frac{p+iq}{1+r}=\frac{1+iz}{1-iz} if p+iq1+r=1+pr+iq1+p+riq\frac{p+iq}{1+r}=\frac{1+p-r+iq}{1+p+r-iq} p(1+p+r)+q2+iq(1+p+r)iqp\Rightarrow p\left(1 + p + r\right) + q^{2} + iq \left(1 + p + r\right) - iqp =(1+r)(1+pr)+iq(1+r)= \left(1 + r\right) \left(1 + p - r\right) + iq \left(1 + r\right) p(1+p+r)+q2\Rightarrow p\left(1 + p + r\right) + q^{2} =(1+r)(1+pr)=\left(1+r\right)\left(1+p-r\right) and q(1+p+r)qpq(1+ p + r) - qp =q(1+r)= q (1 + r) [This is clearly true] \therefore the condition is p(1+p+r)+q2p(1 + p + r) + q^2 =(1+r)(1+pr)= (1 + r) (1 + p - r) p+p2+pr+q2\Rightarrow p+p^2 + pr + q^2 =1+pr+prr2= 1 + p - r + pr - r^2 p2+q2+r2=1\Rightarrow p^2+q^2+r^2=1