Solveeit Logo

Question

Question: Given: \( {{z}_{1}}+{{z}_{2}}+{{z}_{3}}=A;{{z}_{1}}+{{z}_{2}}w+{{z}_{3}}{{w}^{2}}=B;{{z}_{1}}+{{z}_{...

Given: z1+z2+z3=A;z1+z2w+z3w2=B;z1+z2w2+z3w=C{{z}_{1}}+{{z}_{2}}+{{z}_{3}}=A;{{z}_{1}}+{{z}_{2}}w+{{z}_{3}}{{w}^{2}}=B;{{z}_{1}}+{{z}_{2}}{{w}^{2}}+{{z}_{3}}w=C , where ‘w’ is the cube root of unity. Prove: {{\left| A \right|}^{2}}+{{\left| B \right|}^{2}}+{{\left| C \right|}^{2}}=3\left\\{ {{\left| {{z}_{1}} \right|}^{2}}+{{\left| {{z}_{2}} \right|}^{2}}+{{\left| {{z}_{3}} \right|}^{2}} \right\\} .

Explanation

Solution

Hint : At first take the absolute value of the square of A, B, C using the formula (a+b+c)2=a2+b2+c2+2ab+2bc+2ca.{{\left( a+b+c \right)}^{2}}={{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2ab+2bc+2ca. Now add them up and use the fact w3=1,w=1,1+w+w2=0{{w}^{3}}=1,\left| w \right|=1,1+w+{{w}^{2}}=0 to get the desired result.

Complete step-by-step answer :
In the question given that A=z1+z2+z3,B=z1+z2w+z3w2A={{z}_{1}}+{{z}_{2}}+{{z}_{3}},B={{z}_{1}}+{{z}_{2}}w+{{z}_{3}}{{w}^{2}} and C=z1+z2w2+z3wC={{z}_{1}}+{{z}_{2}}{{w}^{2}}+{{z}_{3}}w also ‘w’ is the cube root of 1, so we can write w3=1{{w}^{3}}=1 .
Now we will use formula,
(a+b+c)2=(a2+b2+c2+2ab+2bc+2ca)..........(i){{\left( a+b+c \right)}^{2}}=\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2ab+2bc+2ca \right)..........(i)
At first, we will prove it by,
(a+b+c)2=(a+b+c)(a+b+c){{\left( a+b+c \right)}^{2}}=\left( a+b+c \right)\left( a+b+c \right)
Now multiplying it, we will get,
a(a+b+c)+b(a+b+c)+c(a+b+c)a\left( a+b+c \right)+b\left( a+b+c \right)+c\left( a+b+c \right)
a2+ab+ac+b2+ab+bc+ac+bc+c2\Rightarrow {{a}^{2}}+ab+ac+{{b}^{2}}+ab+bc+ac+bc+{{c}^{2}}
Now, adding and rearranging, we will get,
(a+b+c)2=a2+b2+c2+2ab+2bc+2ca\Rightarrow {{\left( a+b+c \right)}^{2}}={{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2ab+2bc+2ca
So, now using it we will find the value of A2{{\left| A \right|}^{2}} ,
A2=(z1+z2+z3)2{{\left| A \right|}^{2}}={{\left( {{z}_{1}}+{{z}_{2}}+{{z}_{3}} \right)}^{2}}
Now using the formula from equation (i), we get
A2=z12+z22+z32+2z1z2+2z2z3+2z3z1.........(ii){{\left| A \right|}^{2}}={{\left| {{z}_{1}} \right|}^{2}}+{{\left| {{z}_{2}} \right|}^{2}}+{{\left| {{z}_{3}} \right|}^{2}}+2{{z}_{1}}{{z}_{2}}+2{{z}_{2}}{{z}_{3}}+2{{z}_{3}}{{z}_{1}}.........(ii)
Now using it we will find the value of B2{{\left| B \right|}^{2}} ,
B2=(z1+z2w+z3w2)2{{\left| B \right|}^{2}}={{\left( {{z}_{1}}+{{z}_{2}}w+{{z}_{3}}{{w}^{2}} \right)}^{2}}
Now using the formula from equation (i), we get
B2=z12+z22w2+z32w4+2z1z2w+2z2z3w3+2z1z3w2{{\left| B \right|}^{2}}={{\left| {{z}_{1}} \right|}^{2}}+{{\left| {{z}_{2}} \right|}^{2}}{{\left| w \right|}^{2}}+{{\left| {{z}_{3}} \right|}^{2}}{{\left| w \right|}^{4}}+2{{z}_{1}}{{z}_{2}}w+2{{z}_{2}}{{z}_{3}}{{w}^{3}}+2{{z}_{1}}{{z}_{3}}{{w}^{2}}
Now using the fact w3=1{{w}^{3}}=1 and then rearranging the terms, the above equation can be written as,
B2=z12+z22w2+z32w+2z1z2w+2z2z3+2z1z3w2...........(iii){{\left| B \right|}^{2}}={{\left| {{z}_{1}} \right|}^{2}}+{{\left| {{z}_{2}} \right|}^{2}}{{\left| w \right|}^{2}}+{{\left| {{z}_{3}} \right|}^{2}}\left| w \right|+2{{z}_{1}}{{z}_{2}}w+2{{z}_{2}}{{z}_{3}}+2{{z}_{1}}{{z}_{3}}{{w}^{2}}...........(iii)
Now using it we will find the value of C2{{\left| C \right|}^{2}} ,
C2=(z1+z2w2+z3w)2{{\left| C \right|}^{2}}={{\left( {{z}_{1}}+{{z}_{2}}{{w}^{2}}+{{z}_{3}}w \right)}^{2}}
Now using the formula from equation (i), we get
C2=z12+z22w4+z32w2+2z1z2w2+2z2z3w3+2z1z3w{{\left| C \right|}^{2}}={{\left| {{z}_{1}} \right|}^{2}}+{{\left| {{z}_{2}} \right|}^{2}}{{\left| w \right|}^{4}}+{{\left| {{z}_{3}} \right|}^{2}}{{\left| w \right|}^{2}}+2{{z}_{1}}{{z}_{2}}{{w}^{2}}+2{{z}_{2}}{{z}_{3}}{{w}^{3}}+2{{z}_{1}}{{z}_{3}}w
Now using the fact w3=1{{w}^{3}}=1 and then rearranging the terms, the above equation can be written as,
C2=z12+z22w+z32w+2z1z2w2+2z1z3w+2z2z3.......(iv){{\left| C \right|}^{2}}={{\left| {{z}_{1}} \right|}^{2}}+{{\left| {{z}_{2}} \right|}^{2}}\left| w \right|+{{\left| {{z}_{3}} \right|}^{2}}\left| w \right|+2{{z}_{1}}{{z}_{2}}{{w}^{2}}+2{{z}_{1}}{{z}_{3}}w+2{{z}_{2}}{{z}_{3}}.......(iv)
Now we will be adding A2,B2,C2{{\left| A \right|}^{2}},{{\left| B \right|}^{2}},{{\left| C \right|}^{2}} we get,
A2+B2+C2{{\left| A \right|}^{2}}+{{\left| B \right|}^{2}}+{{\left| C \right|}^{2}}
Substituting values from equation (ii), (iii) and (iv), we get
=z12+z22+z32+2z1z2+2z2z3+2z3z1+z12+z22w2+z32w+2z1z2w+2z2z3+2z1z3w2 +z12+z22w+z32w2+2z1z2w2+2z1z3w+2z2z3 \begin{aligned} & ={{\left| {{z}_{1}} \right|}^{2}}+{{\left| {{z}_{2}} \right|}^{2}}+{{\left| {{z}_{3}} \right|}^{2}}+2{{z}_{1}}{{z}_{2}}+2{{z}_{2}}{{z}_{3}}+2{{z}_{3}}{{z}_{1}}+{{\left| {{z}_{1}} \right|}^{2}}+{{\left| {{z}_{2}} \right|}^{2}}{{\left| w \right|}^{2}}+{{\left| {{z}_{3}} \right|}^{2}}\left| w \right|+2{{z}_{1}}{{z}_{2}}w+2{{z}_{2}}{{z}_{3}}+2{{z}_{1}}{{z}_{3}}{{w}^{2}} \\\ & +{{\left| {{z}_{1}} \right|}^{2}}+{{\left| {{z}_{2}} \right|}^{2}}\left| w \right|+{{\left| {{z}_{3}} \right|}^{2}}{{\left| w \right|}^{2}}+2{{z}_{1}}{{z}_{2}}{{w}^{2}}+2{{z}_{1}}{{z}_{3}}w+2{{z}_{2}}{{z}_{3}} \\\ \end{aligned}
Now by rearranging and using the fact which is w=1\left| w \right|=1 we get,
{{\left| A \right|}^{2}}+{{\left| B \right|}^{2}}+{{\left| C \right|}^{2}}=3\left\\{ {{\left| {{z}_{1}} \right|}^{2}}+{{\left| {{z}_{2}} \right|}^{2}}+{{\left| {{z}_{3}} \right|}^{2}} \right\\}+2{{z}_{1}}{{z}_{2}}\left( 1+w+{{w}^{2}} \right)+2{{z}_{1}}{{z}_{3}}\left( 1+w+{{w}^{2}} \right)+2{{z}_{3}}{{z}_{1}}\left( 1+w+{{w}^{2}} \right)So, now using fact (1+w+w2)=0\left( 1+w+{{w}^{2}} \right)=0 we get that,
{{\left| A \right|}^{2}}+{{\left| B \right|}^{2}}+{{\left| C \right|}^{2}}=3\left\\{ {{\left| {{z}_{1}} \right|}^{2}}+{{\left| {{z}_{2}} \right|}^{2}}+{{\left| {{z}_{3}} \right|}^{2}} \right\\}
Hence proved

Note : Students while breaking the square should be cautious as there are high chances of making mistakes of leaving any term. While adding they should also keep the fact such as w3=1,w2+w+1=0{{w}^{3}}=1,{{w}^{2}}+w+1=0 . Students often make mistakes when considering the fact (1+w+w2)=0\left( 1+w+{{w}^{2}} \right)=0 .