Solveeit Logo

Question

Question: Given, \(y\left( 0 \right) = 2000,{\text{ }}\dfrac{{dy}}{{dx}} = 32000 - 20{y^2}\) then what is the ...

Given, y(0)=2000, dydx=3200020y2y\left( 0 \right) = 2000,{\text{ }}\dfrac{{dy}}{{dx}} = 32000 - 20{y^2} then what is the value of limxy(x)\mathop {\lim }\limits_{x \to \infty } y\left( x \right).
A. 20 B. 40 C. 60 D. 320  {\text{A}}{\text{. 20}} \\\ {\text{B}}{\text{. 40}} \\\ {\text{C}}{\text{. 60}} \\\ {\text{D}}{\text{. 320}} \\\

Explanation

Solution

We will first integrate the given equation in order to find the value of y, then we will find the value of C using the value of y when x=0, then we will get the appropriate response by simplifying the obtained equation.

Complete step-by-step answer :
Given that y(0)=2000, dydx=3200020y2y\left( 0 \right) = 2000,{\text{ }}\dfrac{{dy}}{{dx}} = 32000 - 20{y^2}
By cross multiplying the equation will become as

dydx=20(1600y2) dy1600y2=20dx dy(y21600)=20dx dyy21600=20dx  \dfrac{{dy}}{{dx}} = 20\left( {1600 - {y^2}} \right) \\\ \Rightarrow \dfrac{{dy}}{{1600 - {y^2}}} = 20dx \\\ \Rightarrow \dfrac{{dy}}{{ - \left( {{y^2} - 1600} \right)}} = 20dx \\\ \Rightarrow \dfrac{{dy}}{{{y^2} - 1600}} = - 20dx \\\

As, y21600=(y+40)(y40){y^2} - 1600 = \left( {y + 40} \right)\left( {y - 40} \right)
Now we will add y+40y + 40 and subtract y40y - 40 in the numerator of the LHS of above equation, we have

[180][(y+40(y+40)(y40)y40(y+40)(y40))dy]=20dx (1y401y+40)dy=80×20dx 1y40dy1y+40dy=1600dx \Rightarrow \left[ {\dfrac{1}{{80}}} \right]\left[ {\int {\left( {\dfrac{{y + 40}}{{\left( {y + 40} \right)\left( {y - 40} \right)}} - \dfrac{{y - 40}}{{\left( {y + 40} \right)\left( {y - 40} \right)}}} \right)} dy} \right] = - 20\int {dx} \\\ \Rightarrow \int {\left( {\dfrac{1}{{y - 40}} - \dfrac{1}{{y + 40}}} \right)} dy = - 80 \times 20\int {dx} \\\ \Rightarrow \int {\dfrac{1}{{y - 40}}dy} - \int {\dfrac{1}{{y + 40}}dy} = - 1600\int {dx} \\\

Also, we know that 1ybdy=log(yb)\int {\dfrac{1}{{y - b}}dy} = \log \left( {y - b} \right)
log(y40)log(y+40)=1600x+C\Rightarrow \log \left( {y - 40} \right) - \log \left( {y + 40} \right) = - 1600x + {\text{C}} where C represents the constant of integration
Using the identity logmlogn=logmn\log m - \log n = \log \dfrac{m}{n} in the above equation, we get
log(y40y+40)=1600x+(1)\Rightarrow \log \left( {\dfrac{{y - 40}}{{y + 40}}} \right) = - 1600x + {\text{C }} \to {\text{(1)}}
Now we will find out the value of C by putting the value of y as 2000 when x = 0 because it is given that y(0)=2000y\left( 0 \right) = 2000

log(2000402000+40)=20(0)+C C=log(19602040) C=log(4951)  \Rightarrow \log \left( {\dfrac{{2000 - 40}}{{2000 + 40}}} \right) = - 20\left( 0 \right) + {\text{C}} \\\ \Rightarrow {\text{C}} = \log \left( {\dfrac{{1960}}{{2040}}} \right) \\\ \Rightarrow {\text{C}} = \log \left( {\dfrac{{49}}{{51}}} \right) \\\

By putting the value of constant of integration C obtained in the equation (1), we get

log(y40y+40)=1600x+log(4951) log(y40y+40)log(4951)=1600x  \Rightarrow \log \left( {\dfrac{{y - 40}}{{y + 40}}} \right) = - 1600x + \log \left( {\dfrac{{49}}{{51}}} \right) \\\ \Rightarrow \log \left( {\dfrac{{y - 40}}{{y + 40}}} \right) - \log \left( {\dfrac{{49}}{{51}}} \right) = - 1600x \\\

Using the identity logmlogn=logmn\log m - \log n = \log \dfrac{m}{n} in the above equation, we get

log(y40y+40×5149)=20x log[51(y40)49(y+40)]=20x  \Rightarrow \log \left( {\dfrac{{y - 40}}{{y + 40}} \times \dfrac{{51}}{{49}}} \right) = - 20x \\\ \Rightarrow - \log \left[ {\dfrac{{51\left( {y - 40} \right)}}{{49\left( {y + 40} \right)}}} \right] = 20x \\\

Using the formula loga=log(1a) - \log a = \log \left( {\dfrac{1}{a}} \right) in the above equation, we get
log[49(y+40)51(y40)]=20x\Rightarrow \log \left[ {\dfrac{{49\left( {y + 40} \right)}}{{51\left( {y - 40} \right)}}} \right] = 20x
As, x20xx \to \infty \Rightarrow 20x \to \infty
Now for xx \to \infty , the RHS part of the above equation will be equal to infinity. To make the LHS part of the equation equal to infinity below condition must be satisfied
log[49(y+40)51(y40)]\log \left[ {\dfrac{{49\left( {y + 40} \right)}}{{51\left( {y - 40} \right)}}} \right] \to \infty
Using the formula logyy\log y \to \infty \Rightarrow y \to \infty , we get
49(y+40)51(y40)\dfrac{{49\left( {y + 40} \right)}}{{51\left( {y - 40} \right)}} \to \infty
The term in the LHS of the above will approach infinity only when the denominator approaches to zero because whenever any number is divided by zero it approaches infinity
51(y40)0 y400 y40  51\left( {y - 40} \right) \to 0 \\\ y - 40 \to 0 \\\ y \to 40 \\\
Therefore, the required value of y is y = 40.
Hence, the correct answer is option B.

Note : A differential equation, in mathematics, is an equation that relates one or more functions and their derivatives. The functions typically represent physical quantities in applications, the derivatives represent their rate of change and the differential equation describes a relation between the two.