Solveeit Logo

Question

Question: Given $x, y \in R, x^2 + y^2 > 0$. Then the range of $\frac{x^2+y^2}{x^2+xy+4y^2}$ is...

Given x,yR,x2+y2>0x, y \in R, x^2 + y^2 > 0. Then the range of x2+y2x2+xy+4y2\frac{x^2+y^2}{x^2+xy+4y^2} is

Answer

[1021015,10+21015]\left[\frac{10 - 2\sqrt{10}}{15}, \frac{10 + 2\sqrt{10}}{15}\right]

Explanation

Solution

Let the given expression be E=x2+y2x2+xy+4y2E = \frac{x^2+y^2}{x^2+xy+4y^2}.
We are given x,yRx, y \in R and x2+y2>0x^2 + y^2 > 0, which means (x,y)(0,0)(x, y) \neq (0, 0).
To find the range of EE, let E=kE = k.
k=x2+y2x2+xy+4y2k = \frac{x^2+y^2}{x^2+xy+4y^2}
k(x2+xy+4y2)=x2+y2k(x^2+xy+4y^2) = x^2+y^2
kx2+kxy+4ky2=x2+y2kx^2 + kxy + 4ky^2 = x^2 + y^2
(k1)x2+kxy+(4k1)y2=0(k-1)x^2 + kxy + (4k-1)y^2 = 0.

This is a homogeneous equation of degree 2 in xx and yy.

Case 1: y=0y = 0.
Since x2+y2>0x^2+y^2 > 0, if y=0y=0, then x2>0x^2 > 0, so x0x \neq 0.
The equation becomes (k1)x2+kx(0)+(4k1)(0)2=0(k-1)x^2 + kx(0) + (4k-1)(0)^2 = 0, which simplifies to (k1)x2=0(k-1)x^2 = 0.
Since x0x \neq 0, we must have k1=0k-1 = 0, so k=1k=1.
If k=1k=1, the original expression is x2+y2x2+xy+4y2=x2x2=1\frac{x^2+y^2}{x^2+xy+4y^2} = \frac{x^2}{x^2} = 1 (for y=0,x0y=0, x \neq 0).
So k=1k=1 is in the range.

Case 2: y0y \neq 0.
We can divide the equation (k1)x2+kxy+(4k1)y2=0(k-1)x^2 + kxy + (4k-1)y^2 = 0 by y2y^2 to get a quadratic equation in xy\frac{x}{y}:
(k1)(xy)2+k(xy)+(4k1)=0(k-1)\left(\frac{x}{y}\right)^2 + k\left(\frac{x}{y}\right) + (4k-1) = 0.
Let t=xyt = \frac{x}{y}. The equation is (k1)t2+kt+(4k1)=0(k-1)t^2 + kt + (4k-1) = 0.

For real solutions for tt (which correspond to real solutions for xx and yy with y0y \neq 0), the discriminant of this quadratic equation must be non-negative, provided the equation is indeed quadratic (i.e., k10k-1 \neq 0).

If k10k-1 \neq 0, the discriminant is Δ=b24ac=k24(k1)(4k1)\Delta = b^2 - 4ac = k^2 - 4(k-1)(4k-1).
Δ=k24(4k2k4k+1)=k24(4k25k+1)=k216k2+20k4=15k2+20k4\Delta = k^2 - 4(4k^2 - k - 4k + 1) = k^2 - 4(4k^2 - 5k + 1) = k^2 - 16k^2 + 20k - 4 = -15k^2 + 20k - 4.
For real solutions for tt, we require Δ0\Delta \ge 0:
15k2+20k40-15k^2 + 20k - 4 \ge 0
15k220k+4015k^2 - 20k + 4 \le 0.

To find the values of kk satisfying this inequality, we find the roots of the quadratic equation 15k220k+4=015k^2 - 20k + 4 = 0.
Using the quadratic formula k=b±b24ac2ak = \frac{-b \pm \sqrt{b^2-4ac}}{2a}:
k=(20)±(20)24(15)(4)2(15)=20±40024030=20±16030=20±41030=10±21015k = \frac{-(-20) \pm \sqrt{(-20)^2 - 4(15)(4)}}{2(15)} = \frac{20 \pm \sqrt{400 - 240}}{30} = \frac{20 \pm \sqrt{160}}{30} = \frac{20 \pm 4\sqrt{10}}{30} = \frac{10 \pm 2\sqrt{10}}{15}.
Let k1=1021015k_1 = \frac{10 - 2\sqrt{10}}{15} and k2=10+21015k_2 = \frac{10 + 2\sqrt{10}}{15}.
Since the quadratic 15k220k+415k^2 - 20k + 4 opens upwards, 15k220k+4015k^2 - 20k + 4 \le 0 when kk is between the roots (inclusive).
So, k1kk2k_1 \le k \le k_2, i.e., 1021015k10+21015\frac{10 - 2\sqrt{10}}{15} \le k \le \frac{10 + 2\sqrt{10}}{15}.

This interval gives the possible values of kk for which the quadratic in tt has real solutions, provided k1k \neq 1.

If k1=0k-1 = 0, i.e., k=1k=1, the equation (k1)t2+kt+(4k1)=0(k-1)t^2 + kt + (4k-1) = 0 becomes 0t2+1t+(411)=00 \cdot t^2 + 1 \cdot t + (4 \cdot 1 - 1) = 0, which is t+3=0t + 3 = 0.
This linear equation has a real solution t=3t = -3. This corresponds to xy=3\frac{x}{y} = -3, or x=3yx = -3y.
For any y0y \neq 0, we can find x=3yx = -3y. Then x2+y2=(3y)2+y2=9y2+y2=10y2x^2+y^2 = (-3y)^2+y^2 = 9y^2+y^2 = 10y^2. Since y0y \neq 0, 10y2>010y^2 > 0, so x2+y2>0x^2+y^2 > 0.
The value of the expression for x=3yx=-3y is (3y)2+y2(3y)2+(3y)y+4y2=9y2+y29y23y2+4y2=10y210y2=1\frac{(-3y)^2+y^2}{(-3y)^2+(-3y)y+4y^2} = \frac{9y^2+y^2}{9y^2-3y^2+4y^2} = \frac{10y^2}{10y^2} = 1.
So k=1k=1 is in the range.

We need to check if k=1k=1 is included in the interval [1021015,10+21015]\left[\frac{10 - 2\sqrt{10}}{15}, \frac{10 + 2\sqrt{10}}{15}\right].
k1=1021015k_1 = \frac{10 - 2\sqrt{10}}{15}. Since 210=402\sqrt{10} = \sqrt{40}, and 6<40<76 < \sqrt{40} < 7, 2106.322\sqrt{10} \approx 6.32.
k1106.3215=3.6815>0k_1 \approx \frac{10 - 6.32}{15} = \frac{3.68}{15} > 0.
k2=10+2101510+6.3215=16.3215>1k_2 = \frac{10 + 2\sqrt{10}}{15} \approx \frac{10 + 6.32}{15} = \frac{16.32}{15} > 1.
Let's formally check 11 against the bounds:
Is 110210151 \ge \frac{10 - 2\sqrt{10}}{15}? 1510210    521015 \ge 10 - 2\sqrt{10} \iff 5 \ge -2\sqrt{10}, which is true.
Is 110+210151 \le \frac{10 + 2\sqrt{10}}{15}? 1510+210    521015 \le 10 + 2\sqrt{10} \iff 5 \le 2\sqrt{10}. Squaring both sides (both are positive), 254025 \le 40, which is true.
So k=1k=1 is indeed within the interval [1021015,10+21015]\left[\frac{10 - 2\sqrt{10}}{15}, \frac{10 + 2\sqrt{10}}{15}\right].

The denominator x2+xy+4y2x^2+xy+4y^2 cannot be zero for any (x,y)(0,0)(x,y) \neq (0,0) such that (k1)x2+kxy+(4k1)y2=0(k-1)x^2 + kxy + (4k-1)y^2 = 0.
If x2+xy+4y2=0x^2+xy+4y^2 = 0, then x2+y2x2+xy+4y2\frac{x^2+y^2}{x^2+xy+4y^2} is undefined.
If x2+xy+4y2=0x^2+xy+4y^2 = 0, then dividing by y2y^2 (if y0y \neq 0), (x/y)2+(x/y)+4=0(x/y)^2 + (x/y) + 4 = 0. Let t=x/yt=x/y. t2+t+4=0t^2+t+4=0. The discriminant is 124(1)(4)=116=15<01^2 - 4(1)(4) = 1-16 = -15 < 0. So t2+t+4=0t^2+t+4=0 has no real solutions for tt. This means x2+xy+4y2x^2+xy+4y^2 can never be zero if y0y \neq 0.
If y=0y=0, x2+xy+4y2=x2x^2+xy+4y^2 = x^2. Since x2+y2>0x^2+y^2 > 0, if y=0y=0, then x0x \neq 0, so x20x^2 \neq 0.
Therefore, the denominator x2+xy+4y2x^2+xy+4y^2 is always non-zero for (x,y)(0,0)(x,y) \neq (0,0).
The derivation based on the quadratic in t=x/yt=x/y is valid for all y0y \neq 0. The case y=0y=0 gives k=1k=1, which is included in the interval obtained from the discriminant.

The range of the expression is the interval [1021015,10+21015]\left[\frac{10 - 2\sqrt{10}}{15}, \frac{10 + 2\sqrt{10}}{15}\right].