Solveeit Logo

Question

Question: Given vectors **a**, **b**, **c** such that \(\mathbf{a}.(\mathbf{b} \times \mathbf{c}) = \lambda \n...

Given vectors a, b, c such that a.(b×c)=λ0,\mathbf{a}.(\mathbf{b} \times \mathbf{c}) = \lambda \neq 0, the value of (b×c).(a+b+c)/λ(\mathbf{b} \times \mathbf{c}).(\mathbf{a} + \mathbf{b} + \mathbf{c})/\lambda is

A

3

B

1

C

3λ- 3\lambda

D

3/λ3/\lambda

Answer

1

Explanation

Solution

(b×c).(a+b+c)λ=(b×c).a+(b×c).b+(b×c).cλ\frac{(b \times c).(a + b + c)}{\lambda} = \frac{(b \times c).a + (b \times c).b + (b \times c).c}{\lambda}

=(b×c).a+0+0λ=λλ=1= \frac{(b \times c).a + 0 + 0}{\lambda} = \frac{\lambda}{\lambda} = 1,

(\becauseGivena.(b×c)=λ=(b×c).aa.(b \times c) = \lambda = (b \times c).a).