Solveeit Logo

Question

Physics Question on Motion in a plane

Given two vectors A=i^+2j^3k^\vec{ A }=-\hat{ i }+2 \hat{ j }-3 \hat{ k } and B=4i^2j^+6k^\vec{ B }=4 \hat{ i }-2 \hat{ j }+6 \hat{ k }. The angle made by (A+B)(\vec{ A }+\vec{ B }) with xx-axis is

A

3030^{\circ}

B

4545^{\circ}

C

6060^{\circ}

D

9090^{\circ}

Answer

4545^{\circ}

Explanation

Solution

Given, A=i^+2j^3k^\vec{ A }=-\hat{ i }+2 \hat{ j }-3 \hat{ k } B=4i^2j^+6k^\vec{ B }=4 \hat{ i }-2 \hat{ j }+6 \hat{ k } Let angle made by (A+B)(\vec{ A }+\vec{ B }) with xx- axis is θ\theta. cosθ=(A+B)i^A+Bi^\cos \theta=\frac{(\vec{ A }+\vec{ B }) \cdot \hat{ i }}{|\vec{ A }+\vec{ B }| \cdot|\hat{ i }|} =(3i^+3k^)i9+91=\frac{(3 \hat{ i }+3 \hat{ k }) \cdot i}{\sqrt{9+9 \cdot 1}} =332=12=\frac{3}{3 \sqrt{2}}=\frac{1}{\sqrt{2}} θ=45\therefore \theta=45^{\circ}