Solveeit Logo

Question

Physics Question on Vector basics

Given two vectors A=i^+2j^3k^A\to =-\widehat{i}+2\widehat{j}-3\widehat{k} and B=4i^+2j^6k^.B\to =4\widehat{i}+2\widehat{j}-6\widehat{k}. . The angle made by (A+B)(A\to +B\to ) with x-axis is

A

3030{}^\circ

B

4545{}^\circ

C

6060{}^\circ

D

9090{}^\circ

Answer

4545{}^\circ

Explanation

Solution

Given, A=i^+2j^3k^\vec{A}=-\hat{i}+2\hat{j}-3\hat{k} B^=4i^2j^+6k^\hat{B}=4\hat{i}-2\hat{j}+6\hat{k} Let angle made by (A+B)(\vec{A}+\vec{B}) with xx- axis is θ.\theta . cosθ=(A+B).i^A+B.i^=(3i^+3k^).i^9+9.1\cos \theta =\frac{(\vec{A}+\vec{B}).\hat{i}}{|\vec{A}+\vec{B}|.|\hat{i}|}=\frac{(3\hat{i}+3\hat{k}).\hat{i}}{\sqrt{9+9}.1} =332=12=\frac{3}{3\sqrt{2}}=\frac{1}{\sqrt{2}} \therefore θ=45o\theta ={{45}^{o}}