Solveeit Logo

Question

Question: Given two matrices A and B \(A=\left[ \begin{matrix} 1 & -2 & 3 \\\ 1 & 4 & 1 \\\ 1...

Given two matrices A and B
A=[123 141 132 ] and B=[11514 112 716 ]A=\left[ \begin{matrix} 1 & -2 & 3 \\\ 1 & 4 & 1 \\\ 1 & -3 & 2 \\\ \end{matrix} \right]\ and\ B=\left[ \begin{matrix} 11 & -5 & -14 \\\ -1 & -1 & 2 \\\ -7 & 1 & 6 \\\ \end{matrix} \right]
Find AB and use this result to solve the following system of equations:
x2y+3z=6,x+4y+z=12,x3y+2z=1x-2y+3z=6,x+4y+z=12,x-3y+2z=1.

Explanation

Solution

Hint:The given problem is related to multiplication of matrices, and solution of simultaneous linear equations. Use the method of AX = B and the property of the identity matrix to solve the equations.

Complete step-by-step answer:
The given two matrices are A=[123 141 132 ] A=\left[ \begin{matrix} 1 & -2 & 3 \\\ 1 & 4 & 1 \\\ 1 & -3 & 2 \\\ \end{matrix} \right]\ and B=[11514 112 716 ]B=\left[ \begin{matrix} 11 & -5 & -14 \\\ -1 & -1 & 2 \\\ -7 & 1 & 6 \\\ \end{matrix} \right] . The product of the matrices is given as AB=[123 141 132 ] [11514 112 716 ]AB=\left[ \begin{matrix} 1 & -2 & 3 \\\ 1 & 4 & 1 \\\ 1 & -3 & 2 \\\ \end{matrix} \right]\ \left[ \begin{matrix} 11 & -5 & -14 \\\ -1 & -1 & 2 \\\ -7 & 1 & 6 \\\ \end{matrix} \right] .
AB=[(1×11)+(2×(1))+(3×(7))(1×(5))+(2×(1))+(3×1)(1×(14))+(2×2)+(3×6) (1×11)+(4×(1))+(1×(7))(1×(5))+(4×(1))+(1×1)(1×(14))+(4×2)+(1×6) (1×11)+(3×(1))+(2×(7))(1×(5))+(3×(1))+(2×1)(1×(14))+(3×2)+(2×6) ]\Rightarrow AB=\left[ \begin{matrix} \left( 1\times 11 \right)+\left( -2\times \left( -1 \right) \right)+\left( 3\times \left( -7 \right) \right) & \left( 1\times \left( -5 \right) \right)+\left( -2\times \left( -1 \right) \right)+\left( 3\times 1 \right) & \left( 1\times \left( -14 \right) \right)+\left( -2\times 2 \right)+\left( 3\times 6 \right) \\\ \left( 1\times 11 \right)+\left( 4\times \left( -1 \right) \right)+\left( 1\times \left( -7 \right) \right) & \left( 1\times \left( -5 \right) \right)+\left( 4\times \left( -1 \right) \right)+\left( 1\times 1 \right) & \left( 1\times \left( -14 \right) \right)+\left( 4\times 2 \right)+\left( 1\times 6 \right) \\\ \left( 1\times 11 \right)+\left( -3\times \left( -1 \right) \right)+\left( 2\times \left( -7 \right) \right) & \left( 1\times \left( -5 \right) \right)+\left( -3\times \left( -1 \right) \right)+\left( 2\times 1 \right) & \left( 1\times \left( -14 \right) \right)+\left( -3\times 2 \right)+\left( 2\times 6 \right) \\\ \end{matrix} \right] AB=[800 080 008 ]\Rightarrow AB=\left[ \begin{matrix} -8 & 0 & 0 \\\ 0 & -8 & 0 \\\ 0 & 0 & -8 \\\ \end{matrix} \right]
AB=8[100 010 001 ]\Rightarrow AB=-8\left[ \begin{matrix} 1 & 0 & 0 \\\ 0 & 1 & 0 \\\ 0 & 0 & 1 \\\ \end{matrix} \right]
AB=8I\Rightarrow AB=-8I, where I is the identity matrix.
We observe that,
AB=8IAB=-8I.
We write II as A.A1A.{{A}^{-1}}.

& \Rightarrow AB=-8A{{A}^{-1}} \\\ & \Rightarrow -8A.{{A}^{-1}}=AB \\\ & \Rightarrow A{{A}^{-1}}=\dfrac{AB}{-8} \\\ & \Rightarrow {{A}^{-1}}=\dfrac{-B}{8} \\\ & \therefore {{A}^{-1}}=\dfrac{-B}{8} \\\ \end{aligned}$$ Given, $x-2y+3z=6$ $\begin{aligned} & x+4y+z=12 \\\ & x-3y+2x=1 \\\ \end{aligned}$ We write the above set of equations in matrix form. $$\left[ \begin{matrix} 1 & -2 & 3 \\\ 1 & 4 & 1 \\\ 1 & -3 & 2 \\\ \end{matrix} \right]\left[ \begin{matrix} x \\\ y \\\ z \\\ \end{matrix} \right]=\left[ \begin{matrix} 6 \\\ 12 \\\ 1 \\\ \end{matrix} \right]$$ We know, $$\left[ \begin{matrix} 1 & -2 & 3 \\\ 1 & 4 & 1 \\\ 1 & -3 & 2 \\\ \end{matrix} \right]=A$$ and $$\left[ \begin{matrix} x \\\ y \\\ z \\\ \end{matrix} \right]=X$$ . Then, $$AX=\left[ \begin{matrix} 6 \\\ 12 \\\ 1 \\\ \end{matrix} \right]$$ $$\begin{aligned} & \Rightarrow {{A}^{-1}}AX={{A}^{-1}}\left[ \begin{matrix} 6 \\\ 12 \\\ 1 \\\ \end{matrix} \right] \\\ & \Rightarrow X={{A}^{-1}}\left[ \begin{matrix} 6 \\\ 12 \\\ 1 \\\ \end{matrix} \right] \\\ & \Rightarrow X=\dfrac{-{{B}^{-1}}}{8}\left[ \begin{matrix} 6 \\\ 12 \\\ 1 \\\ \end{matrix} \right] \\\ & \Rightarrow X=\dfrac{-1}{8}\left[ \begin{matrix} 11 & -5 & -14 \\\ -1 & -1 & 2 \\\ -7 & 1 & 6 \\\ \end{matrix} \right]\left[ \begin{matrix} 6 \\\ 12 \\\ 1 \\\ \end{matrix} \right] \\\ \end{aligned}$$ $$\Rightarrow X=\dfrac{-1}{8}\left[ \begin{matrix} \left( 11\times 6 \right)+\left( -5\times 12 \right)+\left( -14\times 1 \right) \\\ \left( -1\times 6 \right)+\left( -1\times 12 \right)+\left( 2\times 1 \right) \\\ \left( -7\times 6 \right)+\left( 1\times 12 \right)+\left( 6\times 1 \right) \\\ \end{matrix} \right]$$ $$\Rightarrow X=\dfrac{-1}{8}\left[ \begin{matrix} 66-60-14 \\\ -6-12+2 \\\ -42+12+6 \\\ \end{matrix} \right]$$ $$\begin{aligned} & \Rightarrow X=\dfrac{-1}{8}\left[ \begin{matrix} -8 \\\ -16 \\\ -24 \\\ \end{matrix} \right]=\left[ \begin{matrix} 1 \\\ 2 \\\ 3 \\\ \end{matrix} \right] \\\ & \Rightarrow \left[ \begin{matrix} x \\\ y \\\ z \\\ \end{matrix} \right]=\left[ \begin{matrix} 1 \\\ 2 \\\ 3 \\\ \end{matrix} \right] \\\ \end{aligned}$$ Therefore, x = 1, y = 2, z = 3. Note: While doing matrix multiplication, make sure the order in which the matrices are taken, because AB is not equal to BA.The number of columns of the 1st matrix must equal the number of rows of the 2nd matrix. And the result will have the same number of rows as the 1st matrix, and the same number of columns as the 2nd matrix.We can verify the answer by substituting values of x , y and z in given equation i.e $x-2y+3z=6$, we get $1-2(2)+3(3)=6$ ,L.H.S=R.H.S hence the answer is right.