Solveeit Logo

Question

Question: Given the vertical height of the projectile at time t is \[y\text{ }=\text{ }4t\text{ }\text{- }5{{t...

Given the vertical height of the projectile at time t is y = 4t - 5t2y\text{ }=\text{ }4t\text{ }\text{- }5{{t}^{2}}and the horizontal distance covered is given by x = 3tx\text{ }=\text{ }3t. Then what is the angle of projection with the horizontal?
a) tan135{{\tan }^{-1}}\dfrac{3}{5}
b) tan145{{\tan }^{-1}}\dfrac{4}{5}
c) tan143{{\tan }^{-1}}\dfrac{4}{3}
d) tan134{{\tan }^{-1}}\dfrac{3}{4}

Explanation

Solution

In order to solve this question, we first need to calculate velocity along the xx axis and yy axis. After that we will find the velocity of the projectile and then calculate the angle of projection.

Complete step-by-step solution:
let us draw the above problem to find the solution easily,

According to the question , we get
y = 4t -5t2y\text{ }=\text{ }4t\text{ }\text{-}5{{t}^{2}} and
x = 3tx\text{ }=\text{ }3t
Now, we have to calculate the velocity along xx- axis,
vxdxdt3m/s{{v}_{x}}\Rightarrow \dfrac{dx}{dt}\Rightarrow 3m/s
Again , velocity along yy- axis,
vydydt{{v}_{y}}\Rightarrow \dfrac{dy}{dt}
vy410t{{v}_{y}}\Rightarrow 4-10t
vyt=0sec4m/s{{v}_{y}}_{t=0\sec}\Rightarrow 4m/s
Therefore, velocity of the projectile,
vVxi+Vyjv\Rightarrow V_x\overrightarrow{i}+ V_y\overrightarrow{j}
v(3i+4j)m/sv\Rightarrow \left( 3\overrightarrow{i}+4\overrightarrow{j} \right)m/s
\therefore Angle of projection,

& \tan \theta \Rightarrow \dfrac{V_y}{V_x} \\\ & \tan \theta \Rightarrow \dfrac{4}{3} \\\ & \theta \Rightarrow {{\tan }^{-1}}\left( \dfrac{4}{3} \right) \\\ \end{aligned}$$ **Therefore , option c is correct.** **Note:** Path of a projectile is known as trajectory, where range is known while the horizontal distance travels by the projectile. When the angle of projection is $${{45}^{\circ }}$$, the horizontal range becomes maximum .