Solveeit Logo

Question

Question: Given the vectors \(\overrightarrow{A}=3\widehat{i}+4\widehat{j}\) and \(\overrightarrow{B}=\widehat...

Given the vectors A=3i^+4j^\overrightarrow{A}=3\widehat{i}+4\widehat{j} and B=i^+j^\overrightarrow{B}=\widehat{i}+\widehat{j}. θ\theta is the angle between A\overrightarrow{A} and B\overrightarrow{B}. Which of the following statements is/are correct?
A. Acosθ(i^+j^2)\left| \overrightarrow{A} \right|\cos \theta \left( \dfrac{\widehat{i}+\widehat{j}}{\sqrt{2}} \right) is the component of A\overrightarrow{A} along B\overrightarrow{B}
B. Acosθ(i^+j^2)\left| \overrightarrow{A} \right|\cos \theta \left( \dfrac{\widehat{i}+\widehat{j}}{\sqrt{2}} \right) is the component of A\overrightarrow{A} perpendicular to B\overrightarrow{B}
C. Acosθ(i^j^2)\left| \overrightarrow{A} \right|\cos \theta \left( \dfrac{\widehat{i}-\widehat{j}}{\sqrt{2}} \right) is the component of A\overrightarrow{A} along B\overrightarrow{B}
D. All of the above.

Explanation

Solution

The component of a vector along another vector is the projection of the first vector on the second vector. To find the projection we use the scalar product of the two vectors.

Complete step by step solution:
Given vectors are,
A=3i^+4j^ B=i^+j^ \begin{aligned} & \overrightarrow{A}=3\widehat{i}+4\widehat{j} \\\ & \overrightarrow{B}=\widehat{i}+\widehat{j} \\\ \end{aligned}
θ\theta is the angle between the two vectors.

To find the angle between the two vectors we use scalar product formula,
AB=ABcosθ\overrightarrow{A}\centerdot \overrightarrow{B}=\left| \overrightarrow{A} \right|\left| \overrightarrow{B}\cos \theta \right|
Where,
A=\left| \overrightarrow{A} \right|= is the magnitude of vectorAA =(32)+(42)=9+16=25=5units=\sqrt{\left( {{3}^{2}} \right)+\left( {{4}^{2}} \right)}=\sqrt{9+16}=\sqrt{25}=5units
B=\left| \overrightarrow{B} \right|=is the magnitude of vectorBB =(12)+(12)=1+1=2units=\sqrt{\left( {{1}^{2}} \right)+\left( {{1}^{2}} \right)}=\sqrt{1+1}=\sqrt{2}units

Then,
(3i^+4j^)(i^+j^)=(5)(2)cosθ (3×1)+(4×1)=(5)(2)cosθ 7=52cosθ cosθ=752\begin{aligned} & \left( 3\widehat{i}+4\widehat{j} \right)\centerdot \left( \widehat{i}+\widehat{j} \right)=\left( 5 \right)\left( \sqrt{2} \right)\cos \theta \\\ & \Rightarrow \left( 3\times 1 \right)+\left( 4\times 1 \right)=\left( 5 \right)\left( \sqrt{2} \right)\cos \theta \\\ & \Rightarrow 7=5\sqrt{2}\cos \theta \\\ & \cos \theta =\dfrac{7}{5\sqrt{2}} \end{aligned}

The component of A\overrightarrow{A}alongB\overrightarrow{B} =AcosθB^=\left| \overrightarrow{A} \right|\cos \theta \widehat{B}

Where,
B^\widehat{B}is the directional unit vector along vector B
B^=BB=i^+j^2\widehat{B}=\dfrac{\overrightarrow{\left| B \right|}}{\left| \overrightarrow{\left| B \right|} \right|}=\dfrac{\widehat{i}+\widehat{j}}{\sqrt{2}}
Hence, the component of A\overrightarrow{A}alongB\overrightarrow{B}isAcosθ(i^+j^2)\left| \overrightarrow{A} \right|\cos \theta \left( \dfrac{\widehat{i}+\widehat{j}}{\sqrt{2}} \right)
The component of A\overrightarrow{A}perpendicular to B\overrightarrow{B}isAcosθ(i^+j^2)\left| \overrightarrow{A} \right|\cos \theta \left( \dfrac{\widehat{i}+\widehat{j}}{\sqrt{2}} \right)

Therefore, option (A) and (B) are correct.

Note: - The component of the vector along another vector is the horizontal component of the vector taking another vector as the base vector.
- The component of the vector perpendicular to another vector is the horizontal component of the vector taking another vector as the base vector.