Solveeit Logo

Question

Physics Question on Atoms

Given the value of Rydberg constant is 107m110^7 \, m^{-1}, the wave number of the last line of the Balmer series in hydrogen spectrum will be :

A

0.5×107m10.5 \times 10^7 \, m^{-1}

B

0.25×107m10.25 \times 10^7 \, m^{-1}

C

2.5×107m12.5 \times 10^7 \, m^{-1}

D

0.025×104m10.025 \times 10^4 \, m^{-1}

Answer

0.25×107m10.25 \times 10^7 \, m^{-1}

Explanation

Solution

1λ=RZ2(1n221n12)=107×12(12212)\frac{1}{\lambda } = RZ^{2} \left(\frac{1}{n_{2}^{2}} - \frac{1}{n_{1}^{2}}\right) = 10^{7} \times1^{2} \left(\frac{1}{2^{2}} - \frac{1}{ \infty^{2}}\right)
\Rightarrow wave number =1λ=0.25×107m1= \frac{1}{\lambda } = 0.25 \times10^{7} m^{-1}