Solveeit Logo

Question

Question: Given the half - cell reactions, \(Cu^{+}(aq) + e^{-} \rightarrow Cu(s),E_{1}^{0} = + 0.52V\)**;** ...

Given the half - cell reactions,

Cu+(aq)+eCu(s),E10=+0.52VCu^{+}(aq) + e^{-} \rightarrow Cu(s),E_{1}^{0} = + 0.52V; Cu2+(aq)+eCu+(aq),E20=+0.16VCu^{2 +}(aq) + e^{-} \rightarrow \overset{+}{Cu}(aq),E_{2}^{0} = + 0.16V

the equilibrium constant for the disproportionation reaction

2Cu+(aq)Cu(s)+Cu2+(aq)at298K2Cu^{+}(aq) \rightarrow Cu(s) + Cu^{2 +}(aq)\text{at}298Kis

A

6×1046 \times 10^{4}

B

6×1066 \times 10^{6}

C

1.2×1061.2 \times 10^{6}

D

1.2×1061.2 \times 10^{- 6}

Answer

1.2×1061.2 \times 10^{6}

Explanation

Solution

E0=E10E20=0.520.16=0.36VE^{0} = E_{1}^{0} - E_{2}^{0} = 0.52 - 0.16 = 0.36V

logKeq=nE00.0592=1×0.360.0592=6.081\log K_{eq} = \frac{nE^{0}}{0.0592} = \frac{1 \times 0.36}{0.0592} = 6.081, Keq=1.20×106\therefore K_{eq} = 1.20 \times 10^{6}