Solveeit Logo

Question

Question: Given the following simultaneous equations for vectors **x** and **y** \(\mathbf{x + y = a}\) ........

Given the following simultaneous equations for vectors x and y

x+y=a\mathbf{x + y = a} .....(i)

x×y=b\mathbf{x}\mathbf{\times}\mathbf{y = b} .....(ii)

x.a=1\mathbf{x.a = 1} .....(iii)

Then x=.........,y=.......\mathbf{x} = .........,\mathbf{y} = .......

A

a,ax\mathbf{a},\mathbf{a} - \mathbf{x}

B

ab,b\mathbf{a} - \mathbf{b},\mathbf{b}

C

b,ab\mathbf{b},\mathbf{a} - b

D

None of these

Answer

None of these

Explanation

Solution

Multiplying (i) scalarly by a,\mathbf{a}, we get a.x+a.y=a2\mathbf{a}.\mathbf{x} + \mathbf{a}.\mathbf{y} = \mathbf{a}^{2}

a.y=a21\therefore\mathbf{a}.\mathbf{y} = \mathbf{a}^{2} - 1 …..(iv), {By (iii)}

Again a×(x×y)=a×b\mathbf{a} \times (\mathbf{x} \times \mathbf{y}) = \mathbf{a} \times \mathbf{b}or (a.y)x(a.x)y=a×b(\mathbf{a}.\mathbf{y})\mathbf{x} - (\mathbf{a}.\mathbf{x})\mathbf{y} = \mathbf{a} \times \mathbf{b}

(a21)xy=a×b(\mathbf{a}^{2} - 1)\mathbf{x} - \mathbf{y} = \mathbf{a} \times \mathbf{b} …..(v), {By (iii) and (iv)}

Adding and subtracting (i) and (v), we get x=a+(a×b)a2x = \frac{\mathbf{a} + (\mathbf{a} \times \mathbf{b})}{\mathbf{a}^{2}} and y=ax\mathbf{y} = \mathbf{a} - \mathbf{x} etc.