Solveeit Logo

Question

Question: Given the family of lines, \(a(3x + 4y + 6) + b(x + y + 2) = 0\). The line of the family situated at...

Given the family of lines, a(3x+4y+6)+b(x+y+2)=0a(3x + 4y + 6) + b(x + y + 2) = 0. The line of the family situated at the greatest distance from point P(2,3)P\left( {2,3} \right) has an equation.
A) 4x+3y+8=04x + 3y + 8 = 0
B) 5x+3y+10=05x + 3y + 10 = 0
C) 15x+8y+30=015x + 8y + 30 = 0
D) None of these

Explanation

Solution

Initially we’ll notice the different equations from the family of equations of the line. Then we will find the intersection point.
From the graph, we can see that the perpendicular line passing through the intersection point will be at the greatest distance from the point $$$$(2,3)\left( {2,3} \right). So we’ll find that line’s equation to get our answer.

Complete step by step solution: Given, a family of line i.e. a(3x+4y+6)+b(x+y+2)=0.a(3x + 4y + 6) + b(x + y + 2) = 0.
A point P(2,3)P(2,3).

Now, From the family of lines given i.e., a(3x+4y+6)+b(x+y+2)=0,a(3x + 4y + 6) + b(x + y + 2) = 0,we get

l1 as (3x+4y+6=0)........(i) l2 as (x+y+2=0)............(ii)  {l_1}{\text{ }}as{\text{ }}(3x + 4y + 6 = 0)........(i) \\\ {l_2}{\text{ }}as{\text{ }}(x + y + 2 = 0)............(ii) \\\

Substituting the value of ‘x’ from equation (ii) to equation(i), we get

3(y2)+4y+6=0 3y6+4y+6=0 y=0  3( - y - 2) + 4y + 6 = 0 \\\ \Rightarrow - 3y - 6 + 4y + 6 = 0 \\\ \Rightarrow y = 0 \\\

Now, putting the value of ‘y’ in equation(ii)

x+0+2=0 x=2  x + 0 + 2 = 0 \\\ \Rightarrow x = - 2 \\\

Therefore, the intersection point of l1 and l2{l_1}{\text{ }}and{\text{ }}{l_2} is (2,0)\left( { - 2,0} \right)
Equation of a line joining two points (x1,y1)({x_1},{y_1}) and (x2,y2)({x_2},{y_2})is given by
(yy1)=(y1y2x1x2)(xx1)(y - {y_1}) = \left( {\dfrac{{{y_1} - {y_2}}}{{{x_1} - {x_2}}}} \right)(x - {x_1})
Therefore, the equation of the line joining (2,0)\left( { - 2,0} \right) and(2,3)\left( {2,3} \right), the point from which the greatest distance is to be measured be l3{{\text{l}}_{\text{3}}} i.e.,
(y0)=(0322)(x+2) y=34(x+2)  (y - 0) = \left( {\dfrac{{0 - 3}}{{ - 2 - 2}}} \right)(x + 2) \\\ \Rightarrow y = \dfrac{3}{4}(x + 2) \\\
The slope of the line(l3{l_3}) is 34\dfrac{3}{4}.
Now, the line perpendicular to the line l3{l_3}passing through the intersection of l1 and l2{l_1}{\text{ }}and{\text{ }}{l_2}i.e.,(2,0)\left( { - 2,0} \right) is the required line let be l4.{l_4}.
The product of slopes of perpendicular lines is equal to(-1).

(slopes of l3)(slopes of l4)=1 34(slopes of l4)=1 slopes of l4=43  (slopes{\text{ }}of{\text{ }}{l_3})(slopes{\text{ }}of{\text{ }}{l_4}) = - 1 \\\ \dfrac{3}{4}(slopes{\text{ }}of{\text{ }}{l_4}) = - 1 \\\ slopes{\text{ }}of{\text{ }}{l_4} = \dfrac{{ - 4}}{3} \\\

Equation of a line joining point (x1,y1)({x_1},{y_1}) and having the slope ‘m’
(yy1)=m(xx1)(y - {y_1}) = m(x - {x_1})
Equation of l4,{l_4},
(y0)=43(x+2) 3y=4x8 4x+3y+8=0  (y - 0) = \dfrac{{ - 4}}{3}(x + 2) \\\ \Rightarrow 3y = - 4x - 8 \\\ \Rightarrow 4x + 3y + 8 = 0 \\\
Hence, Option (A) is the correct option.
Note: We can find the slope of l3{l_3}without finding the line equation of l3{l_3}as
The slope of a line passing through two points (x1,y1)({x_1},{y_1}) and (x2,y2)({x_2},{y_2})is given by
slope=y1y2x1x2slope = \dfrac{{{y_1} - {y_2}}}{{{x_1} - {x_2}}}

The slope of the line(l3)=302(2) =34  The{\text{ }}slope{\text{ }}of{\text{ }}the{\text{ }}line({l_3}) = \dfrac{{3 - 0}}{{2 - ( - 2)}} \\\ = \dfrac{3}{4} \\\