Solveeit Logo

Question

Question: Given, the equation x$^3$ - 75x + a = 0 has three integral roots $\alpha$, $\beta$ and $\gamma$ (whe...

Given, the equation x3^3 - 75x + a = 0 has three integral roots α\alpha, β\beta and γ\gamma (where a \in I) then (α+β+γ4)(\frac{|\alpha| + |\beta| + |\gamma|}{4}) is equal to

A

2

B

4

C

5

D

6

Answer

5

Explanation

Solution

Let the given cubic equation be x375x+a=0x^3 - 75x + a = 0.
Let its three integral roots be α\alpha, β\beta, and γ\gamma.

Using Vieta's formulas for a cubic equation Ax3+Bx2+Cx+D=0Ax^3 + Bx^2 + Cx + D = 0:

  1. Sum of roots: α+β+γ=B/A\alpha + \beta + \gamma = -B/A
    For the given equation, A=1A=1, B=0B=0, C=75C=-75, D=aD=a.
    So, α+β+γ=0/1=0\alpha + \beta + \gamma = -0/1 = 0. (Equation 1)

  2. Sum of products of roots taken two at a time: αβ+βγ+γα=C/A\alpha\beta + \beta\gamma + \gamma\alpha = C/A
    So, αβ+βγ+γα=75/1=75\alpha\beta + \beta\gamma + \gamma\alpha = -75/1 = -75. (Equation 2)

  3. Product of roots: αβγ=D/A\alpha\beta\gamma = -D/A
    So, αβγ=a/1=a\alpha\beta\gamma = -a/1 = -a. (Equation 3)

From Equation 1, α+β+γ=0\alpha + \beta + \gamma = 0.
Since α,β,γ\alpha, \beta, \gamma are integers, and their sum is zero, at least one root must be negative if there are positive roots, or vice versa. Also, no root can be zero, because if α=0\alpha=0, then from Equation 3, a=0    a=0-a=0 \implies a=0. The equation becomes x375x=0    x(x275)=0x^3 - 75x = 0 \implies x(x^2 - 75) = 0. The roots would be 0,75,750, \sqrt{75}, -\sqrt{75}, which are not all integers. Thus, all roots must be non-zero integers.

Substitute γ=(α+β)\gamma = -(\alpha + \beta) from Equation 1 into Equation 2:
αβ+β((α+β))+α((α+β))=75\alpha\beta + \beta(-(\alpha + \beta)) + \alpha(-(\alpha + \beta)) = -75
αβαββ2α2αβ=75\alpha\beta - \alpha\beta - \beta^2 - \alpha^2 - \alpha\beta = -75
α2β2αβ=75-\alpha^2 - \beta^2 - \alpha\beta = -75
α2+β2+αβ=75\alpha^2 + \beta^2 + \alpha\beta = 75 (Equation 4)

We need to find integer solutions for α\alpha and β\beta that satisfy Equation 4.
We can rewrite Equation 4 as: 4α2+4β2+4αβ=3004\alpha^2 + 4\beta^2 + 4\alpha\beta = 300
(2α+β)2+3β2=300(2\alpha + \beta)^2 + 3\beta^2 = 300
Let X=2α+βX = 2\alpha + \beta. Then X2+3β2=300X^2 + 3\beta^2 = 300.
Since β\beta is an integer, β2\beta^2 must be a perfect square.
Also, 3β2300    β2100    10β103\beta^2 \le 300 \implies \beta^2 \le 100 \implies -10 \le \beta \le 10.
And X2=3003β2=3(100β2)X^2 = 300 - 3\beta^2 = 3(100 - \beta^2). For X2X^2 to be a perfect square, 3(100β2)3(100 - \beta^2) must be a perfect square. This implies that (100β2)(100 - \beta^2) must be of the form 3k23k^2 for some integer kk.

Let's test integer values for β\beta within the range [10,10][-10, 10] (excluding 0, as roots are non-zero):

  • If β=±1\beta = \pm 1: 100(±1)2=99100 - (\pm 1)^2 = 99, not 3k23k^2.

  • If β=±2\beta = \pm 2: 100(±2)2=96100 - (\pm 2)^2 = 96, not 3k23k^2.

  • If β=±3\beta = \pm 3: 100(±3)2=91100 - (\pm 3)^2 = 91, not 3k23k^2.

  • If β=±4\beta = \pm 4: 100(±4)2=84100 - (\pm 4)^2 = 84, not 3k23k^2.

  • If β=±5\beta = \pm 5: 100(±5)2=75=3×25=3×52100 - (\pm 5)^2 = 75 = 3 \times 25 = 3 \times 5^2. This is a valid case (k=5k=5).
    If β=5\beta = 5: X2=3(75)=225    X=±15X^2 = 3(75) = 225 \implies X = \pm 15.

    • Case A: 2α+β=15    2α+5=15    2α=10    α=52\alpha + \beta = 15 \implies 2\alpha + 5 = 15 \implies 2\alpha = 10 \implies \alpha = 5.
      Roots are (α,β,γ)=(5,5,(α+β))=(5,5,(5+5))=(5,5,10)(\alpha, \beta, \gamma) = (5, 5, -(\alpha+\beta)) = (5, 5, -(5+5)) = (5, 5, -10).

    • Case B: 2α+β=15    2α+5=15    2α=20    α=102\alpha + \beta = -15 \implies 2\alpha + 5 = -15 \implies 2\alpha = -20 \implies \alpha = -10.
      Roots are (α,β,γ)=(10,5,(α+β))=(10,5,(10+5))=(10,5,5)(\alpha, \beta, \gamma) = (-10, 5, -(\alpha+\beta)) = (-10, 5, -(-10+5)) = (-10, 5, 5). If β=5\beta = -5: X2=3(75)=225    X=±15X^2 = 3(75) = 225 \implies X = \pm 15.

    • Case C: 2α+β=15    2α5=15    2α=20    α=102\alpha + \beta = 15 \implies 2\alpha - 5 = 15 \implies 2\alpha = 20 \implies \alpha = 10.
      Roots are (α,β,γ)=(10,5,(α+β))=(10,5,(105))=(10,5,5)(\alpha, \beta, \gamma) = (10, -5, -(\alpha+\beta)) = (10, -5, -(10-5)) = (10, -5, -5).

    • Case D: 2α+β=15    2α5=15    2α=10    α=52\alpha + \beta = -15 \implies 2\alpha - 5 = -15 \implies 2\alpha = -10 \implies \alpha = -5.
      Roots are (α,β,γ)=(5,5,(α+β))=(5,5,(55))=(5,5,10)(\alpha, \beta, \gamma) = (-5, -5, -(\alpha+\beta)) = (-5, -5, -(-5-5)) = (-5, -5, 10).

  • If β=±6\beta = \pm 6: 100(±6)2=64100 - (\pm 6)^2 = 64, not 3k23k^2.

  • If β=±7\beta = \pm 7: 100(±7)2=51100 - (\pm 7)^2 = 51, not 3k23k^2.

  • If β=±8\beta = \pm 8: 100(±8)2=36100 - (\pm 8)^2 = 36, not 3k23k^2.

  • If β=±9\beta = \pm 9: 100(±9)2=19100 - (\pm 9)^2 = 19, not 3k23k^2.

  • If β=±10\beta = \pm 10: 100(±10)2=0=3×02100 - (\pm 10)^2 = 0 = 3 \times 0^2. This is a valid case (k=0k=0).
    If β=10\beta = 10: X2=3(0)=0    X=0X^2 = 3(0) = 0 \implies X = 0.

    • Case E: 2α+β=0    2α+10=0    2α=10    α=52\alpha + \beta = 0 \implies 2\alpha + 10 = 0 \implies 2\alpha = -10 \implies \alpha = -5.
      Roots are (α,β,γ)=(5,10,(α+β))=(5,10,(5+10))=(5,10,5)(\alpha, \beta, \gamma) = (-5, 10, -(\alpha+\beta)) = (-5, 10, -(-5+10)) = (-5, 10, -5). If β=10\beta = -10: X2=3(0)=0    X=0X^2 = 3(0) = 0 \implies X = 0.

    • Case F: 2α+β=0    2α10=0    2α=10    α=52\alpha + \beta = 0 \implies 2\alpha - 10 = 0 \implies 2\alpha = 10 \implies \alpha = 5.
      Roots are (α,β,γ)=(5,10,(α+β))=(5,10,(510))=(5,10,5)(\alpha, \beta, \gamma) = (5, -10, -(\alpha+\beta)) = (5, -10, -(5-10)) = (5, -10, 5).

All these sets of roots {5,5,10}\{5, 5, -10\}, {10,5,5}\{-10, 5, 5\}, {10,5,5}\{10, -5, -5\}, {5,5,10}\{-5, -5, 10\}, {5,10,5}\{-5, 10, -5\}, {5,10,5}\{5, -10, 5\} are permutations of the same set of integral roots: {5,5,10}\{5, 5, -10\}.

Let's verify this set of roots:
For roots (5,5,10)(5, 5, -10):

  1. Sum: 5+5+(10)=05 + 5 + (-10) = 0. (Correct)
  2. Sum of products: (5)(5)+(5)(10)+(10)(5)=255050=75(5)(5) + (5)(-10) + (-10)(5) = 25 - 50 - 50 = -75. (Correct)
  3. Product: (5)(5)(10)=250(5)(5)(-10) = -250.
    From Equation 3, αβγ=a\alpha\beta\gamma = -a, so a=250    a=250-a = -250 \implies a = 250. Since aIa \in I, this is a valid solution.

Now we need to calculate (α+β+γ4)(\frac{|\alpha| + |\beta| + |\gamma|}{4}).
Using the roots (5,5,10)(5, 5, -10):
α=5=5|\alpha| = |5| = 5
β=5=5|\beta| = |5| = 5
γ=10=10|\gamma| = |-10| = 10

(α+β+γ4)=(5+5+104)=(204)=5(\frac{|\alpha| + |\beta| + |\gamma|}{4}) = (\frac{5 + 5 + 10}{4}) = (\frac{20}{4}) = 5.