Question
Question: Given, the equation x$^3$ - 75x + a = 0 has three integral roots $\alpha$, $\beta$ and $\gamma$ (whe...
Given, the equation x3 - 75x + a = 0 has three integral roots α, β and γ (where a ∈ I) then (4∣α∣+∣β∣+∣γ∣) is equal to

2
4
5
6
5
Solution
Let the given cubic equation be x3−75x+a=0.
Let its three integral roots be α, β, and γ.
Using Vieta's formulas for a cubic equation Ax3+Bx2+Cx+D=0:
-
Sum of roots: α+β+γ=−B/A
For the given equation, A=1, B=0, C=−75, D=a.
So, α+β+γ=−0/1=0. (Equation 1) -
Sum of products of roots taken two at a time: αβ+βγ+γα=C/A
So, αβ+βγ+γα=−75/1=−75. (Equation 2) -
Product of roots: αβγ=−D/A
So, αβγ=−a/1=−a. (Equation 3)
From Equation 1, α+β+γ=0.
Since α,β,γ are integers, and their sum is zero, at least one root must be negative if there are positive roots, or vice versa. Also, no root can be zero, because if α=0, then from Equation 3, −a=0⟹a=0. The equation becomes x3−75x=0⟹x(x2−75)=0. The roots would be 0,75,−75, which are not all integers. Thus, all roots must be non-zero integers.
Substitute γ=−(α+β) from Equation 1 into Equation 2:
αβ+β(−(α+β))+α(−(α+β))=−75
αβ−αβ−β2−α2−αβ=−75
−α2−β2−αβ=−75
α2+β2+αβ=75 (Equation 4)
We need to find integer solutions for α and β that satisfy Equation 4.
We can rewrite Equation 4 as: 4α2+4β2+4αβ=300
(2α+β)2+3β2=300
Let X=2α+β. Then X2+3β2=300.
Since β is an integer, β2 must be a perfect square.
Also, 3β2≤300⟹β2≤100⟹−10≤β≤10.
And X2=300−3β2=3(100−β2). For X2 to be a perfect square, 3(100−β2) must be a perfect square. This implies that (100−β2) must be of the form 3k2 for some integer k.
Let's test integer values for β within the range [−10,10] (excluding 0, as roots are non-zero):
-
If β=±1: 100−(±1)2=99, not 3k2.
-
If β=±2: 100−(±2)2=96, not 3k2.
-
If β=±3: 100−(±3)2=91, not 3k2.
-
If β=±4: 100−(±4)2=84, not 3k2.
-
If β=±5: 100−(±5)2=75=3×25=3×52. This is a valid case (k=5).
If β=5: X2=3(75)=225⟹X=±15.-
Case A: 2α+β=15⟹2α+5=15⟹2α=10⟹α=5.
Roots are (α,β,γ)=(5,5,−(α+β))=(5,5,−(5+5))=(5,5,−10). -
Case B: 2α+β=−15⟹2α+5=−15⟹2α=−20⟹α=−10.
Roots are (α,β,γ)=(−10,5,−(α+β))=(−10,5,−(−10+5))=(−10,5,5). If β=−5: X2=3(75)=225⟹X=±15. -
Case C: 2α+β=15⟹2α−5=15⟹2α=20⟹α=10.
Roots are (α,β,γ)=(10,−5,−(α+β))=(10,−5,−(10−5))=(10,−5,−5). -
Case D: 2α+β=−15⟹2α−5=−15⟹2α=−10⟹α=−5.
Roots are (α,β,γ)=(−5,−5,−(α+β))=(−5,−5,−(−5−5))=(−5,−5,10).
-
-
If β=±6: 100−(±6)2=64, not 3k2.
-
If β=±7: 100−(±7)2=51, not 3k2.
-
If β=±8: 100−(±8)2=36, not 3k2.
-
If β=±9: 100−(±9)2=19, not 3k2.
-
If β=±10: 100−(±10)2=0=3×02. This is a valid case (k=0).
If β=10: X2=3(0)=0⟹X=0.-
Case E: 2α+β=0⟹2α+10=0⟹2α=−10⟹α=−5.
Roots are (α,β,γ)=(−5,10,−(α+β))=(−5,10,−(−5+10))=(−5,10,−5). If β=−10: X2=3(0)=0⟹X=0. -
Case F: 2α+β=0⟹2α−10=0⟹2α=10⟹α=5.
Roots are (α,β,γ)=(5,−10,−(α+β))=(5,−10,−(5−10))=(5,−10,5).
-
All these sets of roots {5,5,−10}, {−10,5,5}, {10,−5,−5}, {−5,−5,10}, {−5,10,−5}, {5,−10,5} are permutations of the same set of integral roots: {5,5,−10}.
Let's verify this set of roots:
For roots (5,5,−10):
- Sum: 5+5+(−10)=0. (Correct)
- Sum of products: (5)(5)+(5)(−10)+(−10)(5)=25−50−50=−75. (Correct)
- Product: (5)(5)(−10)=−250.
From Equation 3, αβγ=−a, so −a=−250⟹a=250. Since a∈I, this is a valid solution.
Now we need to calculate (4∣α∣+∣β∣+∣γ∣).
Using the roots (5,5,−10):
∣α∣=∣5∣=5
∣β∣=∣5∣=5
∣γ∣=∣−10∣=10
(4∣α∣+∣β∣+∣γ∣)=(45+5+10)=(420)=5.