Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

Given that xx is a real number satisfying 5x226x+53x210x+3<0,\frac{5x^{2}-26x+5}{3x^{2}-10x+3} < 0 , then

A

$x

B

15<x<3\frac{1}{5} < x < 3

C

x>5x > 5

D

15<x<13\frac{1}{5} < x < \frac{1}{3} or 3<x<53 < x < 5

Answer

15<x<13\frac{1}{5} < x < \frac{1}{3} or 3<x<53 < x < 5

Explanation

Solution

We have, 5x226x+53x210x+3<0\frac{5 x^{2}-26 x+5}{3 x^{2}-10 x+3}<0
5x225xx+53x29xx+3<0\Rightarrow \frac{5 x^{2}-25 x-x+5}{3 x^{2}-9 x-x+3}<0
5x(x5)1(x5)3x(x3)1(x3)<0\Rightarrow \frac{5 x(x-5)-1(x-5)}{3 x(x-3)-1(x-3)}<0
(x5)(5x1)(x3)(3x1)<0\Rightarrow \frac{(x-5)(5 x-1)}{(x-3)(3 x-1)}< 0
x(15,13)(3,5)\therefore x \in\left(\frac{1}{5}, \frac{1}{3}\right) \cup(3,5)