Solveeit Logo

Question

Question: Given that \[x\] and \[y\] satisfy the relation. \[y = 3\left[ x \right] + 7\] \[y = 4\left[ {x ...

Given that xx and yy satisfy the relation.
y=3[x]+7y = 3\left[ x \right] + 7
y=4[x3]+4y = 4\left[ {x - 3} \right] + 4 then find [x+y]\left[ {x + y} \right].

Explanation

Solution

- Hint: In this problem, we need to use the property of the greatest integers to solve the given equation and find the value of xandyx\,\,{\text{and}}\,\,y. Now, again use the property of the greatest integer function to obtain the value of the given expression.

Complete step-by-step solution -
The given equations are shown below.

y=3[x]+7......(1) y=4[x3]+4......(2)  y = 3\left[ x \right] + 7\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,......\left( 1 \right) \\\ y = 4\left[ {x - 3} \right] + 4\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,......\left( 2 \right) \\\

Now, from equation (1) and (2),

3[x]+7=4[x3]+4 3[x]+7=4[x]12+4 3[x]+7=4[x]8 4[x]3[x]=8+7 [x]=15 15<x<16  \,\,\,\,\,\,3\left[ x \right] + 7 = 4\left[ {x - 3} \right] + 4 \\\ \Rightarrow 3\left[ x \right] + 7 = 4\left[ x \right] - 12 + 4 \\\ \Rightarrow 3\left[ x \right] + 7 = 4\left[ x \right] - 8 \\\ \Rightarrow 4\left[ x \right] - 3\left[ x \right] = 8 + 7 \\\ \Rightarrow \left[ x \right] = 15 \\\ \Rightarrow 15 < x < 16 \\\

Now, substitute, 15 for [x]\left[ x \right] in equation (1) to obtain the value of y.

y=3(15)+7 y=45+7 y=52  \,\,\,\,\,\,\,y = 3\left( {15} \right) + 7 \\\ \Rightarrow y = 45 + 7 \\\ \Rightarrow y = 52 \\\

Substitute 15 for [x]\left[ x \right] and 52 for y in [x+y]\left[ {x + y} \right].

[15+52] [67] 67  \,\,\,\,\,\,\,\left[ {15 + 52} \right] \\\ \Rightarrow \left[ {67} \right] \\\ \Rightarrow 67 \\\

Thus, the value of [x+y]\left[ {x + y} \right] is 67.

Note: The greatest integer function rounds of the real numbers down to the integer less than the original number. For the interval (n,n+1)\left( {n,n + 1} \right), the value of the greatest integer function isnn, where nn is an integer.