Solveeit Logo

Question

Question: Given that, x| 10| 15| 20 ---|---|---|--- f(x)| 14| 18| 28 The estimated value of f...

Given that,

x101520
f(x)141828

The estimated value of f(12) is
(a) 15.520
(b) 14.88
(c) 15.37
(d) 14.78

Explanation

Solution

To solve the given question, we will first find out the function f(x). We will assume that the function f(x) is of the form a1xn+a2xn1+a3xn2+.....+anx+an+1.{{a}_{1}}{{x}^{n}}+{{a}_{2}}{{x}^{n-1}}+{{a}_{3}}{{x}^{n-2}}+.....+{{a}_{n}}x+{{a}_{n+1}}. Now, as there are only three pairs of x and f(x) are given, we will assume the value of n such that we are able to find all the variables (a1,a2......an).\left( {{a}_{1}},{{a}_{2}}......{{a}_{n}} \right). Now, after finding the values of all the variables, we will put them in f(x). After doing this, we will put x = 12 in f(x) and we will find its value.

Complete step-by-step answer:
To start with, we will assume that the function f(x) is a polynomial of n order i.e. f(x)=a1xn+a2xn1+a3xn2+.....+anx+an+1.f\left( x \right)={{a}_{1}}{{x}^{n}}+{{a}_{2}}{{x}^{n-1}}+{{a}_{3}}{{x}^{n-2}}+.....+{{a}_{n}}x+{{a}_{n+1}}. Now, we have to find this function f(x) and three pairs of x and f(x) are given in the question. So, we will have to take the value of n such that we are able to find the values of all the variables (a1,a2......an).\left( {{a}_{1}},{{a}_{2}}......{{a}_{n}} \right). Thus, we will choose n = 2 as we have three unknown variables a1,a2,a3.{{a}_{1}},{{a}_{2}},{{a}_{3}}. So, after putting n = 2 in f(x), we get the following equation.
f(x)=a1x2+a2x+a3......(i)f\left( x \right)={{a}_{1}}{{x}^{2}}+{{a}_{2}}x+{{a}_{3}}......\left( i \right)
Now, we have to find the values of a1,a2,a3.{{a}_{1}},{{a}_{2}},{{a}_{3}}. For this, we are given three pairs of x and f(x). So, when we put x = 10, we get f(x) = 14. Thus, we will get the following equation
f(10)=a1(10)2+a2(10)+a3f\left( 10 \right)={{a}_{1}}{{\left( 10 \right)}^{2}}+{{a}_{2}}\left( 10 \right)+{{a}_{3}}
14=100a1+10a2+a3\Rightarrow 14=100{{a}_{1}}+10{{a}_{2}}+{{a}_{3}}
100a1+10a2+a3=14.......(ii)\Rightarrow 100{{a}_{1}}+10{{a}_{2}}+{{a}_{3}}=14.......\left( ii \right)
Now, it is given that when we put x = 15, we get f(x) = 18. Thus, we will get the following equation
f(15)=a1(15)2+a2(15)+a3f\left( 15 \right)={{a}_{1}}{{\left( 15 \right)}^{2}}+{{a}_{2}}\left( 15 \right)+{{a}_{3}}
18=225a1+15a2+a3\Rightarrow 18=225{{a}_{1}}+15{{a}_{2}}+{{a}_{3}}
225a1+15a2+a3=18......(iii)\Rightarrow 225{{a}_{1}}+15{{a}_{2}}+{{a}_{3}}=18......\left( iii \right)
Now, it is given that when we put x = 20, we get f(x) = 28. Thus, we will get the following equation
f(20)=a1(20)2+a2(20)+a3f\left( 20 \right)={{a}_{1}}{{\left( 20 \right)}^{2}}+{{a}_{2}}\left( 20 \right)+{{a}_{3}}
28=400a1+20a2+a3\Rightarrow 28=400{{a}_{1}}+20{{a}_{2}}+{{a}_{3}}
400a1+20a2+a3=28.......(iv)\Rightarrow 400{{a}_{1}}+20{{a}_{2}}+{{a}_{3}}=28.......\left( iv \right)
Now, we will subtract (ii) from (iii). Thus, we will get the following equation.
(225a1+15a2+a3)(100a1+10a2+a3)=1814\Rightarrow \left( 225{{a}_{1}}+15{{a}_{2}}+{{a}_{3}} \right)-\left( 100{{a}_{1}}+10{{a}_{2}}+{{a}_{3}} \right)=18-14
225a1100a1+15a210a2+a3a3=4\Rightarrow 225{{a}_{1}}-100{{a}_{1}}+15{{a}_{2}}-10{{a}_{2}}+{{a}_{3}}-{{a}_{3}}=4
125a1+5a2=4......(v)\Rightarrow 125{{a}_{1}}+5{{a}_{2}}=4......\left( v \right)
Now, we will subtract (iii) from (iv). Thus, we will get the following equation
(400a1+20a2+a3)(225a1+15a2+a3)=2818\Rightarrow \left( 400{{a}_{1}}+20{{a}_{2}}+{{a}_{3}} \right)-\left( 225{{a}_{1}}+15{{a}_{2}}+{{a}_{3}} \right)=28-18
400a1225a1+20a215a2+a3a3=10\Rightarrow 400{{a}_{1}}-225{{a}_{1}}+20{{a}_{2}}-15{{a}_{2}}+{{a}_{3}}-{{a}_{3}}=10
175a1+5a2=10......(vi)\Rightarrow 175{{a}_{1}}+5{{a}_{2}}=10......\left( vi \right)
Now, we will subtract (v) from (vi). Thus, we will get the following equation.
(175a1+5a2)(125a1+5a2)=104\Rightarrow \left( 175{{a}_{1}}+5{{a}_{2}} \right)-\left( 125{{a}_{1}}+5{{a}_{2}} \right)=10-4
175a1125a1+5a25a2=6\Rightarrow 175{{a}_{1}}-125{{a}_{1}}+5{{a}_{2}}-5{{a}_{2}}=6
50a1=6\Rightarrow 50{{a}_{1}}=6
a1=650\Rightarrow {{a}_{1}}=\dfrac{6}{50}
a1=325......(vii)\Rightarrow {{a}_{1}}=\dfrac{3}{25}......\left( vii \right)
Now, we will put the value a1{{a}_{1}} from (vii) to (v). Thus, we will get the following equation.
125(325)+5a2=4\Rightarrow 125\left( \dfrac{3}{25} \right)+5{{a}_{2}}=4
15+5a2=4\Rightarrow 15+5{{a}_{2}}=4
5a2=415\Rightarrow 5{{a}_{2}}=4-15
5a2=11\Rightarrow 5{{a}_{2}}=-11
a2=115....(viii)\Rightarrow {{a}_{2}}=\dfrac{-11}{5}....\left( viii \right)
Now, we will put the values of a1{{a}_{1}} and a2{{a}_{2}} from (vii) and (viii) to (ii). Thus, we will get the following equation.
100(325)+10(115)+a3=14\Rightarrow 100\left( \dfrac{3}{25} \right)+10\left( \dfrac{-11}{5} \right)+{{a}_{3}}=14
1222+a3=14\Rightarrow 12-22+{{a}_{3}}=14
10+a3=14\Rightarrow -10+{{a}_{3}}=14
a3=24......(ix)\Rightarrow {{a}_{3}}=24......\left( ix \right)
Now, we will put the values of a1,a2,a3{{a}_{1}},{{a}_{2}},{{a}_{3}} from (vii), (viii) and (ix) into (i). Thus, we will get,
f(x)=325x2115x+24f\left( x \right)=\dfrac{3}{25}{{x}^{2}}-\dfrac{11}{5}x+24
Now, we have to find the value of f(12). For this, we will simply put x = 12. Thus, we will get,
f(12)=325(12)2115(12)+24f\left( 12 \right)=\dfrac{3}{25}{{\left( 12 \right)}^{2}}-\dfrac{11}{5}\left( 12 \right)+24
f(12)=325(144)11×125+24\Rightarrow f\left( 12 \right)=\dfrac{3}{25}\left( 144 \right)-\dfrac{11\times 12}{5}+24
f(12)=432251325+24\Rightarrow f\left( 12 \right)=\dfrac{432}{25}-\dfrac{132}{5}+24
f(12)=17.2826.5+24\Rightarrow f\left( 12 \right)=17.28-26.5+24
f(12)=14.88\Rightarrow f\left( 12 \right)=14.88
Hence, option (b) is the right answer.

So, the correct answer is “Option (b)”.

Note: While solving the question, we have assumed that f(x) is a quadratic polynomial. There may be chances that f(x) is a polynomial of a higher order. Also, it may be possible that f(x) is not even a polynomial, it is some other function. That’s why the value of f(12) obtained is not exact, it is estimated on the basis that f(x) is a quadratic polynomial.