Solveeit Logo

Question

Mathematics Question on Probability

Given that the events AA and BB are such that P(A)=12,P(AB)=35P(A)=\frac{1}{2},P(A∪B)=\frac{3}{5} and P(B)=ρ.P(B)=ρ.
Find ρρ if they are(i) mutually exclusive,(ii) independent.

Answer

P(A)=12,P(A)=\frac{1}{2},
P(AB)=35,P(A∪B)=\frac{3}{5},and P(B)=ρP(B)=ρ
(i)A and B are mutually exclusive events, then
AB=ϕA∩B=ϕ
P(AϕB)=0⇒P(AϕB)=0
P(AB)=P(A)+P(B)P(AB)∴P(A∪B)=P(A)+P(B)-P(A∩B)
35=12+ρ⇒\frac{3}{5}=\frac{1}{2}+ρ
ρ=3512⇒ρ=\frac{3}{5}-\frac{1}{2}
=6510=\frac{6-5}{10}
=110=\frac{1}{10}


(ii) AA and BB are independent events.
P(AB)=P(A)+P(B)P(A).P(B)∴P(A∪B)=P(A)+P(B)-P(A).P(B)
35=12+ρ12×ρ⇒\frac{3}{5}=\frac{1}{2}+ρ-\frac{1}{2}×ρ
3512=12ρ⇒\frac{3}{5}-\frac{1}{2}=\frac{1}{2}ρ
12ρ=110⇒\frac{1}{2}ρ=\frac{1}{10}
ρ=15⇒ρ=\frac{1}{5}