Solveeit Logo

Question

Physics Question on simple harmonic motion

Given that the displacement of an oscillating particle is given by y=Asin(B +Ct+D)y=Asin(B~+Ct+D) . The dimensional formula for (ABCD) is

A

[M0L1T0][{{M}_{0}}{{L}^{-1}}{{T}^{0}}]

B

[M0L0T1][M{{\,}^{0}}{{L}^{0}}{{T}^{-1}}]

C

[M0L1T1][{{M}^{0}}{{L}^{-1}}{{T}^{-1}}]

D

[M0L0T0][{{M}^{0}}{{L}^{0}}{{T}^{0}}]

Answer

[M0L0T1][M{{\,}^{0}}{{L}^{0}}{{T}^{-1}}]

Explanation

Solution

y=A sin(Bx+Ct+D)y=A\text{ }sin(Bx+Ct+D) As each term inside the bracket is dimensionless, so A=y=[L1]A=y=[{{L}^{1}}] B=1x=[L1]B=\frac{1}{x}=[{{L}^{-1}}] C=1t=[T1]C=\frac{1}{t}=[{{T}^{-1}}] and D is dimensionless. \therefore [ABCD]=[L][L1][T1][1][ABCD]=[L][{{L}^{-1}}][{{T}^{-1}}][1] =[M0L0T1]=[{{M}^{0}}{{L}^{0}}{{T}^{-1}}]