Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

Given that tanθ=m0,tan2θ=n0\tan \, \theta = m \neq 0, \tan \, 2 \theta = n \neq 0 and tanθ+tan2θ=tan3θ\tan \, \theta + \tan \, 2 \theta = \tan \, 3 \theta, then which one of the following is correct ?

A

m = n

B

m + n = 1

C

m + n = 0

D

mn = - 1

Answer

m + n = 0

Explanation

Solution

Given that tanθ=m\tan \, \theta = m and tan2θ=n\tan \, 2 \theta = n We know from fundamentals that tan3θ=tanθ+tan2θ1tanθtan2θ\Rightarrow \tan3\theta = \frac{\tan\theta+\tan2\theta}{1-\tan\theta \tan2\theta} Since , tan3θ=tanθ+tan2θ..... \tan3 \theta = \tan\theta+\tan2 \theta ..... as given) tanθ+tan2θ=tanθ+tan2θ1tanθtan2θ\Rightarrow \tan\theta + \tan2 \theta = \frac{\tan\theta+\tan2\theta}{1-\tan\theta \tan2 \theta} (tanθ+tan2θ)(1tanθtan2θ)(tanθ+tan2θ)=0\Rightarrow \left(\tan\theta + \tan2\theta\right)\left(1- \tan\theta \tan2 \theta\right) - \left(\tan\theta + \tan2 \theta\right) = 0 \Rightarrow \left(\tan\theta + \tan2\theta\right)\left\\{1-\tan\theta \tan2 \theta-1\right\\} = 0 (tanθ+tan2θ)(tanθtan2θ)=0 \Rightarrow \left(\tan\theta + \tan2\theta \right)\left(\tan\theta \tan2\theta \right) = 0 (m+n)(mn)=0;(m+n)=0 \Rightarrow \left(m+n\right)\left(mn\right)= 0; \Rightarrow \left(m+n\right)=0 [Since, m0nm \ne0 n and 0]\ne0 ]