Question
Mathematics Question on Trigonometric Functions
Given that tanθ=m=0,tan2θ=n=0 and tanθ+tan2θ=tan3θ, then which one of the following is correct ?
A
m = n
B
m + n = 1
C
m + n = 0
D
mn = - 1
Answer
m + n = 0
Explanation
Solution
Given that tanθ=m and tan2θ=n We know from fundamentals that ⇒tan3θ=1−tanθtan2θtanθ+tan2θ Since , tan3θ=tanθ+tan2θ..... as given) ⇒tanθ+tan2θ=1−tanθtan2θtanθ+tan2θ ⇒(tanθ+tan2θ)(1−tanθtan2θ)−(tanθ+tan2θ)=0 \Rightarrow \left(\tan\theta + \tan2\theta\right)\left\\{1-\tan\theta \tan2 \theta-1\right\\} = 0 ⇒(tanθ+tan2θ)(tanθtan2θ)=0 ⇒(m+n)(mn)=0;⇒(m+n)=0 [Since, m=0n and =0]