Solveeit Logo

Question

Question: Given that \(P=Q=R.\) If \(\overrightarrow{P}+\overrightarrow{Q}=\overrightarrow{R}\) then the angle...

Given that P=Q=R.P=Q=R. If P+Q=R\overrightarrow{P}+\overrightarrow{Q}=\overrightarrow{R} then the angle between P and Q\overrightarrow{P}\text{ }and\text{ }\overrightarrow{Q} is θ1{{\theta }_{1}}. If P+Q+R=0\overrightarrow{P}+\overrightarrow{Q}+\overrightarrow{R}=\overrightarrow{0} then the angle between PandR\overrightarrow{P}and\overrightarrow {R} is θ2{{\theta }_{2}}. The relation between θ1andθ2{{\theta }_{1}} \, and \,{{\theta }_{2}} is.
A) θ1=θ2{{\theta }_{1}}={{\theta }_{2}}
B) θ1=θ22{{\theta }_{1}}=\dfrac{{{\theta }_{2}}}{2}
C) θ1=2θ2{{\theta }_{1}}=2{{\theta }_{2}}
D) θ1=4θ2{{\theta }_{1}}=4{{\theta }_{2}}

Explanation

Solution

We have been provided with a magnitude of vector P=Q=RP=Q=R. In this question we have given two conditions using the first condition and given the equation i.e. P+Q=R\overrightarrow{P}+\overrightarrow{Q}=\overrightarrow{R}. Since angle θ1{{\theta }_{1}} is the angle between PandR\overrightarrow{P}and\overrightarrow{R} so use parallelogram laws of vector addition apply P=Q=R.P=Q=R. condition and we get value of θ1{{\theta }_{1}} similarly in second condition use parallelogram law of vector addition and given condition to calculate θ2{{\theta }_{2}} the angle between PandR\overrightarrow{P}and\overrightarrow{R}.

Complete step by step solution:
In this question we have been provided with vector P, Q, R. given that P=Q=RP=Q=R we have first condition over here that if R=P+Q\overrightarrow{R}=\overrightarrow{P}+\overrightarrow{Q} then angle between PandR\overrightarrow{P}and\overrightarrow{R} is θ1{{\theta }_{1}}. And we have second condition which is, if P+Q+R=0\overrightarrow{P}+\overrightarrow{Q}+\overrightarrow{R}=\overrightarrow{0} then angle between PandR\overrightarrow{P}and\overrightarrow{R} is θ2{{\theta }_{2}} now we need to calculate the relation between θ1{{\theta }_{1}} and θ2{{\theta }_{2}}.
Given that, magnitude of vector is P=Q=R\left| \overrightarrow{P} \right|=\left| \overrightarrow{Q} \right|=\left| \overrightarrow{R} \right| let, use first condition i.e. P+Q=R\overrightarrow{P}+\overrightarrow{Q}=\overrightarrow{R} since θ1{{\theta }_{1}} is the angle between PandR\overrightarrow{P}and\overrightarrow{R} so let’s take R\overrightarrow{R} on left side and vector Q\overrightarrow{Q} on another side.
=>PR=Q\overrightarrow{=>P}-\overrightarrow{R}=-\overrightarrow{Q}
Take dot product we get,
=>(PR)(PR)=(Q)(Q)=>\left( \overrightarrow{P}-\overrightarrow{R} \right)\left( \overrightarrow{P}-\overrightarrow{R} \right)=\left( -\overrightarrow{Q} \right)\left( -\overrightarrow{Q} \right)
According to parallelogram law of vector addition, we get,
=>P2+R22PRcosθ1=Q2=>{{\overrightarrow{P}}^{2}}+{{\overrightarrow{R}}^{2}}-2\overrightarrow{P}\overrightarrow{R}\cos {{\theta }_{1}}={{\overrightarrow{Q}}^{2}}
It is given that P=Q=RP=Q=R therefore,
=>Q2+Q22QQcosθ1=Q2 =>Q2(22cosθ1)=Q2 =>22cosθ1=1 =>1cosθ1=12 =>cosθ1=12 =>θ=60o.......(1) \begin{aligned} & =>{{Q}^{2}}+{{Q}^{2}}-2QQ\cos {{\theta }_{1}}={{Q}^{2}} \\\ & =>{{Q}^{2}}(2-2\cos {{\theta }_{1}})={{Q}^{2}} \\\ & =>2-2\cos {{\theta }_{1}}=1 \\\ & =>1-\cos {{\theta }_{1}}=\dfrac{1}{2} \\\ & =>\cos {{\theta }_{1}}=\dfrac{1}{2} \\\ & =>\theta ={{60}^{o}}.......(1) \\\ \end{aligned}
Hence, the angle between P and R, for first condition is θ1=60o{{\theta }_{1}}={{60}^{o}}
Now use second condition which is given as, when P+Q+R=0\overrightarrow{P}+\overrightarrow{Q}+\overrightarrow{R}=\overrightarrow{0} then angle between P and Q is θ2{{\theta }_{2}} so,
=>P+Q+R=0\overrightarrow{=>P}+\overrightarrow{Q}+\overrightarrow{R}=\overrightarrow{0},
can be written as,
=>P+R=Q=>\overrightarrow{P}+\overrightarrow{R}=-\overrightarrow{Q}
Take dot product we get,
=>(P+R)(P+R)=(Q)(Q)=>\left( \overrightarrow{P}+\overrightarrow{R} \right)\left( \overrightarrow{P}+\overrightarrow{R} \right)=\left( -\overrightarrow{Q} \right)\left( -\overrightarrow{Q} \right)
Again use parallelogram law of vector addition, we get,
=>p2+R2+2PRcosθ2=Q2=>{{\overrightarrow{p}}^{2}}+{{\overrightarrow{R}}^{2}}+2\overrightarrow{P}\overrightarrow{R}\cos {{\theta }_{2}}={{\overrightarrow{Q}}^{2}}
(Since θ2{{\theta }_{2}} is the angle betweenPandR\overrightarrow{P}and\overrightarrow{R})
It is given that P=Q=RP=Q=R therefore,
=>Q2+Q2+2QQcosθ2=Q2 =>Q2(2+2cosθ2)=Q2 =>2(1+cosθ2)=1 =>1+cosθ2=12 =>cosθ2=12 =>θ2=120o.....(2) \begin{aligned} & =>{{Q}^{2}}+{{Q}^{2}}+2QQ\cos {{\theta }_{2}}={{Q}^{2}} \\\ & =>{{Q}^{2}}(2+2\cos {{\theta }_{2}})={{Q}^{2}} \\\ & =>2(1+\cos {{\theta }_{2}})=1 \\\ & =>1+\cos {{\theta }_{2}}=\dfrac{1}{2} \\\ & =>\cos {{\theta }_{2}}=-\dfrac{1}{2} \\\ & =>{{\theta }_{2}}={{120}^{o}}.....(2) \\\ \end{aligned}
So, if you compare equation (1) and equation (2) then we can say
=>θ2=2θ1=>{{\theta }_{2}}=2{{\theta }_{1}}

Therefore, option (c) is the correct option.

Note: According to parallelogram law of vector addition, if two vectors of the same type is starting from the same point, are represented in magnitude and direction by two adjacent sides of a parallelogram then their resultant vector is given in magnitude and direction by the diagonal of the parallelogram starting from the same point the diagonal of the parallelogram made by two vectors as adjacent sides is not passing through common point of two vectors.