Solveeit Logo

Question

Mathematics Question on Probability

Given that P(A)=0.1,P(BA)=0.6P(A) = 0.1, P(B | A) = 0.6 and P(BAc)=0.3 P(B |A^c ) = 0.3 what is P(AB)P(A | B) ?

A

211\frac{2}{11}

B

411\frac{4}{11}

C

711\frac{7}{11}

D

911\frac{9}{11}

Answer

211\frac{2}{11}

Explanation

Solution

Given, P(BA)=0.6P( B|A) = 0.6
P(BA)P(A)=0.6\Rightarrow \frac{P\left(B \cap A\right)}{P\left(A\right)} = 0.6
P(BA)=0.6×0.1=0.06\Rightarrow P(B \cap A) = 0.6 \times 0.1 = 0.06
Also, P(BAC)=0.3P(B|A^C) = 0.3
P(BAC)P(AC)=0.3\Rightarrow \frac{P\left(B \cap A^C\right)}{P\left(A^C\right)} = 0.3
P(B)P(BA)1P(A)=0.3\Rightarrow \frac{P\left(B \right) - P \left(B \cap A\right)}{1 - P\left(A\right)} = 0.3
P(B)0.060.9=0.3\Rightarrow \frac{P\left(B \right) - 0.06 }{0.9 } = 0.3
P(B)=0.33\Rightarrow P\left(B \right) = 0.33
Now, P(AB)=P(AB)P(B)=0.060.33=211P\left(A | B\right)=\frac{P\left(A \,\cap \,B\right)}{P\left(B\right)}=\frac{0.06}{0.33}=\frac{2}{11}