Solveeit Logo

Question

Question: Given that for each \(a \in \left( {0,1} \right)\) ,\(\mathop {\lim }\limits_{h \to {0^ + }} \int\li...

Given that for each a(0,1)a \in \left( {0,1} \right) ,limh0+h1hta(1t)a1dt\mathop {\lim }\limits_{h \to {0^ + }} \int\limits_h^{1 - h} {{t^a}{{\left( {1 - t} \right)}^{a - 1}}dt} exists. Let this limit be g(a)g\left( a \right) . In addition, it is given that the function g(a)g\left( a \right) is differentiable on (0,1), then the value of g(12)g\left( {\dfrac{1}{2}} \right) is?
A) π\pi
B) 2π2\pi
C) π2\dfrac{\pi }{2}
D) π4\dfrac{\pi }{4}

Explanation

Solution

In the integral calculus, we are to find a function whose differential is given. Thus, integration is a process that is the inverse of differentiation.
Let dF(x)dx=f(x)\dfrac{{dF\left( x \right)}}{{dx}} = f\left( x \right), then f(x)dx=F(x)+C\smallint f\left( x \right)dx = F\left( x \right) + C , where C is the integration constant.
Calculate g(12)g\left( {\dfrac{1}{2}} \right) but substituting a by 12\dfrac{1}{2} and solve the resultant definite integral.
The definite integral is calculated whenever a function ff is given over the range [a,b]\left[ {a,b} \right] , where aa and bb are called limits of integration, aa being the lower limit and bb being the upper limit. I.e.:
abf(x)dx=F(b)F(a)\int\limits_a^b {f\left( x \right)dx} = F\left( b \right) - F\left( a \right)
In other words, definite integral (integral whose limits are given) is given by upper limits minus lower limits.
A change in the variable of integration often reduces an integral to one of the fundamental integrals.
The method in which we change the variable to some other variable is called the method of substitution.
When the integrand involves some trigonometric functions, we use some well-known identities to find the integrals.

Complete step-by-step answer:
Step 1: Given that:
g(a)=limh0+h1hta(1t)a1dtg\left( a \right) = \mathop {\lim }\limits_{h \to {0^ + }} \int\limits_h^{1 - h} {{t^{ - a}}{{\left( {1 - t} \right)}^{a - 1}}} dt
To find g(12)g\left( {\dfrac{1}{2}} \right)
Put a=12a = \dfrac{1}{2}
g(12)=limh0+h1ht12(1t)12dtg\left( {\dfrac{1}{2}} \right) = \mathop {\lim }\limits_{h \to {0^ + }} \int\limits_h^{1 - h} {{t^{ - \dfrac{1}{2}}}{{\left( {1 - t} \right)}^{ - \dfrac{1}{2}}}} dt
Both tt and (1t)\left( {1 - t} \right) have the same power 12 - \dfrac{1}{2}, thus, they can be concluded under the one square-root.
=limh0+h1h1t(1t)dt= \mathop {\lim }\limits_{h \to {0^ + }} \int\limits_h^{1 - h} {\dfrac{1}{{\sqrt {t\left( {1 - t} \right)} }}} dt
Step 2: Solving the integral by substitution:
Take t=sin2θt = {\sin ^2}\theta
On differentiating both sides
Using the differential formulas: dtdt=1\dfrac{{dt}}{{dt}} = 1 ,
d(xn)dx=nxn1\dfrac{{d\left( {{x^n}} \right)}}{{dx}} = n{x^{n - 1}} ,
d(sinx)dx=cosx\dfrac{{d\left( {\sin x} \right)}}{{dx}} = \cos x
dt=2sinθcosθdθdt = 2\sin \theta \cos \theta d\theta
Change the limits according to the θ\theta .
As th0t \to h \to 0
θsin10=0\theta \to {\sin ^{ - 1}}\sqrt 0 = 0
As t1h=1t \to 1 - h = 1
θsin11=π2\theta \to {\sin ^{ - 1}}\sqrt 1 = \dfrac{\pi }{2}
On substituting tt, dtdt and limits of θ\theta . The integral becomes:
0π22sinθcosθsin2θ(1sin2θ)dθ\Rightarrow \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{2\sin \theta \cos \theta }}{{\sqrt {{{\sin }^2}\theta \left( {1 - {{\sin }^2}\theta } \right)} }}} d\theta
Using trigonometric identity: sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1
cos2x=1sin2x\Rightarrow {\cos ^2}x = 1 - {\sin ^2}x
Thus, 0π22sinθcosθsin2θcos2θdθ\int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{2\sin \theta \cos \theta }}{{\sqrt {{{\sin }^2}\theta {{\cos }^2}\theta } }}} d\theta
=0π22sinθcosθsinθcosθdθ= \int\limits_0^{\dfrac{\pi }{2}} {\dfrac{{2\sin \theta \cos \theta }}{{\sin \theta \cos \theta }}} d\theta
=0π22dθ= \int\limits_0^{\dfrac{\pi }{2}} 2 d\theta
Using the integration: dx=x\int {dx = x}
=2[θ]0π2= 2\left[ \theta \right]_0^{\dfrac{\pi }{2}}
Step 3: Calculating the limits.
=2×[θ]0π2= 2 \times \left[ \theta \right]_0^{\dfrac{\pi }{2}}
The definite integral is given by upper limits minus lower limits.
Upper limits =π2 = \dfrac{\pi }{2} , lower limits =0. = 0.
=2×[π20]= 2 \times \left[ {\dfrac{\pi }{2} - 0} \right]
=π= \pi
The value of g(12)g\left( {\dfrac{1}{2}} \right) comes out to be π\pi .

Thus option (B) is correct.

Note: The limh0 +\mathop {\lim }\limits_{h \to {0^{{\text{ }} + }}} i.e., limit h tends to 0+{0^ + }because, for h=0h = 0, ta{t^{ - a}} or 1ta\dfrac{1}{{{t^a}}} will be 10a\dfrac{1}{{{0^a}}} which is undetermined form, to avoid this situation limit h tends to 0+{0^ + } instead of 0.

For solving integral =limh0+h1h1t(1t)dt = \mathop {\lim }\limits_{h \to {0^ + }} \int\limits_h^{1 - h} {\dfrac{1}{{\sqrt {t\left( {1 - t} \right)} }}} dt , students can also do the following method.
limh0+h1h1t(1t)dt\mathop {\lim }\limits_{h \to {0^ + }} \int\limits_h^{1 - h} {\dfrac{1}{{\sqrt {t\left( {1 - t} \right)} }}} dt
limh0+h1h1(tt2)dt\Rightarrow \mathop {\lim }\limits_{h \to {0^ + }} \int\limits_h^{1 - h} {\dfrac{1}{{\sqrt {\left( {t - {t^2}} \right)} }}} dt
Make the expression tt2t - {t^2} a perfect square.
tt2=tt2+1414 (12)2(t2t+(12)2) (12)2(t12)2  t - {t^2} = t - {t^2} + \dfrac{1}{4} - \dfrac{1}{4} \\\ \Rightarrow {\left( {\dfrac{1}{2}} \right)^2} - \left( {{t^2} - t + {{\left( {\dfrac{1}{2}} \right)}^2}} \right) \\\ \Rightarrow {\left( {\dfrac{1}{2}} \right)^2} - {\left( {t - \dfrac{1}{2}} \right)^2} \\\
The integral becomes
limh0+h1h1((12)2(t12)2)dt\Rightarrow \mathop {\lim }\limits_{h \to {0^ + }} \int\limits_h^{1 - h} {\dfrac{1}{{\sqrt {\left( {{{\left( {\dfrac{1}{2}} \right)}^2} - {{\left( {t - \dfrac{1}{2}} \right)}^2}} \right)} }}} dt
Using the particular integral of type dxa2x2=sin1xa+C\int {\dfrac{{dx}}{{\sqrt {{a^2} - {x^2}} }}} = {\sin ^{ - 1}}\dfrac{x}{a} + C
On comparing x=(t12)x = \left( {t - \dfrac{1}{2}} \right) and a=(12)a = \left( {\dfrac{1}{2}} \right)
The integral solved as:

sin1(t12)1201 sin1(2t12)1201=sin1(2t1)01  \left. {{{\sin }^{ - 1}}\dfrac{{\left( {t - \dfrac{1}{2}} \right)}}{{\dfrac{1}{2}}}} \right|_0^1 \\\ \Rightarrow \left. {{{\sin }^{ - 1}}\dfrac{{\left( {\dfrac{{2t - 1}}{2}} \right)}}{{\dfrac{1}{2}}}} \right|_0^1 = \left. {{{\sin }^{ - 1}}\left( {2t - 1} \right)} \right|_0^1 \\\

Solving limits:

sin11sin1(1) sin11+sin11 2sin11  \Rightarrow {\sin ^{ - 1}}1 - {\sin ^{ - 1}}( - 1) \\\ \Rightarrow {\sin ^{ - 1}}1 + {\sin ^{ - 1}}1 \\\ \Rightarrow 2{\sin ^{ - 1}}1 \\\

We know, sin11=π2{\sin ^{ - 1}}1 = \dfrac{\pi }{2}

2×π2 π  \Rightarrow 2 \times \dfrac{\pi }{2} \\\ \Rightarrow \pi \\\