Solveeit Logo

Question

Question: Given that, for all the real values of x, the expression \(\dfrac{{{x}^{2}}-2x+4}{{{x}^{2}}+2x+4}\) ...

Given that, for all the real values of x, the expression x22x+4x2+2x+4\dfrac{{{x}^{2}}-2x+4}{{{x}^{2}}+2x+4} lies between 13and 3\dfrac{1}{3}\text{and }3. The values between which the expression 9.32x6.3x+49.32x+6.3x+4\dfrac{{{9.3}^{2x}}-{{6.3}^{x}}+4}{{{9.3}^{2x}}+{{6.3}^{x}}+4} lies are
a. 0 and 2
b. -1 and 1
c. -1 and 0
d. 13and 3\dfrac{1}{3}\text{and }3

Explanation

Solution

We will first assume y=x22x+4x2+2x+4y=\dfrac{{{x}^{2}}-2x+4}{{{x}^{2}}+2x+4} and on further solving this, we get an equation, x2(1y)2x(1+y)+44y=0{{x}^{2}}\left( 1-y \right)-2x\left( 1+y \right)+4-4y=0 which is a quadratic equation and we know that discriminant of quadratic equation b24ac{{b}^{2}}-4ac must be greater than 0 for any real value of roots. On solving the discriminant, we get to know that the range of y[13,3]y\in \left[ \dfrac{1}{3},3 \right] as its independent of x. Then, in the final step, we will write, 9.32x6.3x+49.32x+6.3x+4\dfrac{{{9.3}^{2x}}-{{6.3}^{x}}+4}{{{9.3}^{2x}}+{{6.3}^{x}}+4} as (3.3x)22(3.3)x+4(3.3x)2+2(3.3)x+4\dfrac{{{\left( {{3.3}^{x}} \right)}^{2}}-2{{\left( 3.3 \right)}^{x}}+4}{{{\left( {{3.3}^{x}} \right)}^{2}}+2{{\left( 3.3 \right)}^{x}}+4} and find the range of the expression.

Complete step-by-step solution:
It is given in the question that for all the real values of x, the expression x22x+4x2+2x+4\dfrac{{{x}^{2}}-2x+4}{{{x}^{2}}+2x+4} lies between 13and 3\dfrac{1}{3}\text{and }3. Then we have to find the values between which the expression 9.32x6.3x+49.32x+6.3x+4\dfrac{{{9.3}^{2x}}-{{6.3}^{x}}+4}{{{9.3}^{2x}}+{{6.3}^{x}}+4} lies.
Let us first assume the expression y=x22x+4x2+2x+4y=\dfrac{{{x}^{2}}-2x+4}{{{x}^{2}}+2x+4}. On cross multiplying both the sides, we get,
y(x2+2x+4)=x22x+4 x2y+2xy+4y=x22x+4 \begin{aligned} & y\left( {{x}^{2}}+2x+4 \right)={{x}^{2}}-2x+4 \\\ & {{x}^{2}}y+2xy+4y={{x}^{2}}-2x+4 \\\ \end{aligned}
On transposing all the terms on the LHS to the RHS, we get,
x22x+4x2y2xy4y x2x2y2x2xy+44y x2(1y)2x(1+y)+4(1y)=0 \begin{aligned} & {{x}^{2}}-2x+4-{{x}^{2}}y-2xy-4y \\\ & {{x}^{2}}-{{x}^{2}}y-2x-2xy+4-4y \\\ & {{x}^{2}}\left( 1-y \right)-2x\left( 1+y \right)+4\left( 1-y \right)=0 \\\ \end{aligned}
Now, it is a quadratic equation and we know that in a quadratic equation, the discriminant b24ac{{b}^{2}}-4ac must be greater than 0 for any real value of roots.
So, from the quadratic equation, we have a = (1 - y), b = -2 (1 + y) and c = 4 (1 – y).
So, we have the discriminant, d=b24acd={{b}^{2}}-4ac and we know that d must be greater than 0, so we can write,
d=b24ac0 =[2(1+y)]24[(1y)(4)(1y)]0 =4(1+y)216(1y)20 \begin{aligned} & d={{b}^{2}}-4ac\ge 0 \\\ & ={{\left[ -2\left( 1+y \right) \right]}^{2}}-4\left[ \left( 1-y \right)\left( 4 \right)\left( 1-y \right) \right]\ge 0 \\\ & =4{{\left( 1+y \right)}^{2}}-16{{\left( 1-y \right)}^{2}}\ge 0 \\\ \end{aligned}
On taking 4 common from both the terms, we get,
=4[(1+y)24(1y)2]0 =[(1+y)24(1y)2]0 \begin{aligned} & =4\left[ {{\left( 1+y \right)}^{2}}-4{{\left( 1-y \right)}^{2}} \right]\ge 0 \\\ & =\left[ {{\left( 1+y \right)}^{2}}-4{{\left( 1-y \right)}^{2}} \right]\ge 0 \\\ \end{aligned}
We know that (a+b)2=a2+b2+2ab{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab and (ab)2=a2+b22ab{{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab, so we get,
=12+y2+2(1)(y)4[12+y22(1)(y)]0 =1+y2+2y4[1+y22y]0 \begin{aligned} & ={{1}^{2}}+{{y}^{2}}+2\left( 1 \right)\left( y \right)-4\left[ {{1}^{2}}+{{y}^{2}}-2\left( 1 \right)\left( y \right) \right]\ge 0 \\\ & =1+{{y}^{2}}+2y-4\left[ 1+{{y}^{2}}-2y \right]\ge 0 \\\ \end{aligned}
On opening the bracket, we get,
=1+y2+2y44y2+8y0=1+{{y}^{2}}+2y-4-4{{y}^{2}}+8y\ge 0
On further simplifying, we get,
=3y2+10y30=-3{{y}^{2}}+10y-3\ge 0
On multiplying both the sides by (-1), we get,
=3y210y+30=3{{y}^{2}}-10y+3\le 0
Here, the sign of the inequality changes as we have multiplied the expression with a negative number. Now, we can split -10y as -9y –y, so we get,
=3y29yy+30 =3y(y3)(y3)0 =(3y1)(y3)0 (3y1)=0 or(y3)=0 y=13or3 \begin{aligned} & =3{{y}^{2}}-9y-y+3\le 0 \\\ & =3y\left( y-3 \right)-\left( y-3 \right)\le 0 \\\ & =\left( 3y-1 \right)\left( y-3 \right)\le 0 \\\ & \left( 3y-1 \right)=0\text{ }or\left( y-3 \right)=0 \\\ & y=\dfrac{1}{3}or3 \\\ \end{aligned}
Now, we will plot 13and 3\dfrac{1}{3}\text{and }3 on the number line.

If we put 0 in (3y1)(y3)0\left( 3y-1 \right)\left( y-3 \right)\le 0, we get, (-1) (-3) = 3, and it is a positive term.
Again, if we put 1 in (3y1)(y3)0\left( 3y-1 \right)\left( y-3 \right)\le 0, we get, (2) (-2) = -4, and it is a negative term.
And we put 4 in (3y1)(y3)0\left( 3y-1 \right)\left( y-3 \right)\le 0, we get, (11) (1) = 11, and it is a positive term.
Hence, we can show the number line as,
Thus, we get a region [13,3]\left[ \dfrac{1}{3},3 \right] where the range is y[13,3]y\in \left[ \dfrac{1}{3},3 \right].
Also, x22x+4x2+2x+4[13,3]\dfrac{{{x}^{2}}-2x+4}{{{x}^{2}}+2x+4}\in \left[ \dfrac{1}{3},3 \right]
This means that the range does not depend on x, but it depend on y.
Now, we have been given the expression, 9.32x6.3x+49.32x+6.3x+4\dfrac{{{9.3}^{2x}}-{{6.3}^{x}}+4}{{{9.3}^{2x}}+{{6.3}^{x}}+4}. So, we can write,
9.32x6.3x+49.32x+6.3x+4=32.32x2(3.3x)+432.32x+2(3.3x)+4 =(3.3x)22(3.3)x+4(3.3x)2+2(3.3)x+4 \begin{aligned} & \dfrac{{{9.3}^{2x}}-{{6.3}^{x}}+4}{{{9.3}^{2x}}+{{6.3}^{x}}+4}=\dfrac{{{3}^{2}}{{.3}^{2x}}-2\left( {{3.3}^{x}} \right)+4}{{{3}^{2}}{{.3}^{2x}}+2\left( {{3.3}^{x}} \right)+4} \\\ & =\dfrac{{{\left( {{3.3}^{x}} \right)}^{2}}-2{{\left( 3.3 \right)}^{x}}+4}{{{\left( {{3.3}^{x}} \right)}^{2}}+2{{\left( 3.3 \right)}^{x}}+4} \\\ \end{aligned}
Let us assume that (3.3x)\left( {{3.3}^{x}} \right) equal to u, so we get,
(u)22u+4(u)2+2u+4\dfrac{{{\left( u \right)}^{2}}-2u+4}{{{\left( u \right)}^{2}}+2u+4}
Now, if we compare (u)22u+4(u)2+2u+4\dfrac{{{\left( u \right)}^{2}}-2u+4}{{{\left( u \right)}^{2}}+2u+4} and x22x+4x2+2x+4\dfrac{{{x}^{2}}-2x+4}{{{x}^{2}}+2x+4}, we get to know that both are similar. We also know that the range of the expression will depend upon y and not x, so it will also not depend on u.
Thus, the range of the expression, 9.32x6.3x+49.32x+6.3x+4\dfrac{{{9.3}^{2x}}-{{6.3}^{x}}+4}{{{9.3}^{2x}}+{{6.3}^{x}}+4} will lie between [13,3]\left[ \dfrac{1}{3},3 \right].
Hence, option (d) is the correct answer.

Note: Most of the students make mistake after multiplying the expression, 3y2+10y30-3{{y}^{2}}+10y-3\ge 0 with (-1). They may directly write it as 3y210y+303{{y}^{2}}-10y+3\ge 0, but this is wrong and will lead to wrong answers. After multiplying the expression with (-1), the sign of the inequality should change and the expression should be 3y210y+303{{y}^{2}}-10y+3\le 0. This question has high chances of calculation errors, so the students are advised to solve this question step by step and carefully.