Solveeit Logo

Question

Question: Given that for a, b, c, d ∈ R, if a sec (200°) - c tan (200°) = d and b sec (200°) + d tan(200°) = c...

Given that for a, b, c, d ∈ R, if a sec (200°) - c tan (200°) = d and b sec (200°) + d tan(200°) = c then a2+b2+c2+d2acbd\frac{a^2 + b^2 + c^2 + d^2}{ac - bd} = pcosec (200°) find the value of p .

Answer

2

Explanation

Solution

Let the given equations be:

  1. asec(200)ctan(200)=da \sec(200^\circ) - c \tan(200^\circ) = d
  2. bsec(200)+dtan(200)=cb \sec(200^\circ) + d \tan(200^\circ) = c

Let x=200x = 200^\circ. The equations become:

  1. asecxctanx=da \sec x - c \tan x = d
  2. bsecx+dtanx=cb \sec x + d \tan x = c

Multiply both equations by cosx\cos x (note that cos(200)0\cos(200^\circ) \neq 0):

  1. acsinx=dcosx    a=dcosx+csinxa - c \sin x = d \cos x \implies a = d \cos x + c \sin x
  2. b+dsinx=ccosx    b=ccosxdsinxb + d \sin x = c \cos x \implies b = c \cos x - d \sin x

We need to evaluate the expression a2+b2+c2+d2acbd\frac{a^2 + b^2 + c^2 + d^2}{ac - bd}.

First, let's calculate a2+b2a^2 + b^2: a2=(dcosx+csinx)2=d2cos2x+c2sin2x+2cdcosxsinxa^2 = (d \cos x + c \sin x)^2 = d^2 \cos^2 x + c^2 \sin^2 x + 2cd \cos x \sin x b2=(ccosxdsinx)2=c2cos2x+d2sin2x2cdcosxsinxb^2 = (c \cos x - d \sin x)^2 = c^2 \cos^2 x + d^2 \sin^2 x - 2cd \cos x \sin x Adding a2a^2 and b2b^2: a2+b2=(d2cos2x+c2sin2x+2cdcosxsinx)+(c2cos2x+d2sin2x2cdcosxsinx)a^2 + b^2 = (d^2 \cos^2 x + c^2 \sin^2 x + 2cd \cos x \sin x) + (c^2 \cos^2 x + d^2 \sin^2 x - 2cd \cos x \sin x) a2+b2=d2(cos2x+sin2x)+c2(sin2x+cos2x)a^2 + b^2 = d^2 (\cos^2 x + \sin^2 x) + c^2 (\sin^2 x + \cos^2 x) Using the identity sin2x+cos2x=1\sin^2 x + \cos^2 x = 1: a2+b2=d2(1)+c2(1)=c2+d2a^2 + b^2 = d^2(1) + c^2(1) = c^2 + d^2.

Now, the numerator of the expression is a2+b2+c2+d2a^2 + b^2 + c^2 + d^2. a2+b2+c2+d2=(c2+d2)+c2+d2=2(c2+d2)a^2 + b^2 + c^2 + d^2 = (c^2 + d^2) + c^2 + d^2 = 2(c^2 + d^2).

Next, let's calculate the denominator acbdac - bd: ac=(dcosx+csinx)c=cdcosx+c2sinxac = (d \cos x + c \sin x) c = cd \cos x + c^2 \sin x bd=(ccosxdsinx)d=cdcosxd2sinxbd = (c \cos x - d \sin x) d = cd \cos x - d^2 \sin x Subtracting bdbd from acac: acbd=(cdcosx+c2sinx)(cdcosxd2sinx)ac - bd = (cd \cos x + c^2 \sin x) - (cd \cos x - d^2 \sin x) acbd=cdcosx+c2sinxcdcosx+d2sinxac - bd = cd \cos x + c^2 \sin x - cd \cos x + d^2 \sin x acbd=c2sinx+d2sinx=(c2+d2)sinxac - bd = c^2 \sin x + d^2 \sin x = (c^2 + d^2) \sin x.

Now substitute the expressions for the numerator and the denominator into the given fraction: a2+b2+c2+d2acbd=2(c2+d2)(c2+d2)sinx\frac{a^2 + b^2 + c^2 + d^2}{ac - bd} = \frac{2(c^2 + d^2)}{(c^2 + d^2) \sin x}.

For this expression to be defined, we must have acbd0ac - bd \neq 0, which means (c2+d2)sinx0(c^2 + d^2) \sin x \neq 0. Since x=200x = 200^\circ, sin(200)=sin(180+20)=sin(20)0\sin(200^\circ) = \sin(180^\circ + 20^\circ) = -\sin(20^\circ) \neq 0. Thus, we must have c2+d20c^2 + d^2 \neq 0. If c2+d20c^2 + d^2 \neq 0, we can cancel the term (c2+d2)(c^2 + d^2): 2(c2+d2)(c2+d2)sinx=2sinx\frac{2(c^2 + d^2)}{(c^2 + d^2) \sin x} = \frac{2}{\sin x}.

We are given that a2+b2+c2+d2acbd=pcosec(200)\frac{a^2 + b^2 + c^2 + d^2}{ac - bd} = p \operatorname{cosec}(200^\circ). Substituting the evaluated expression: 2sin(200)=pcosec(200)\frac{2}{\sin(200^\circ)} = p \operatorname{cosec}(200^\circ). Since cosec(200)=1sin(200)\operatorname{cosec}(200^\circ) = \frac{1}{\sin(200^\circ)}, we have: 2sin(200)=p1sin(200)\frac{2}{\sin(200^\circ)} = p \frac{1}{\sin(200^\circ)}.

Since sin(200)0\sin(200^\circ) \neq 0, we can multiply both sides by sin(200)\sin(200^\circ): 2=p2 = p.

The value of pp is 2.

Note: If c2+d2=0c^2 + d^2 = 0, then c=0c=0 and d=0d=0 (since c,dRc, d \in \mathbb{R}). The original equations become:

  1. asec(200)=0    a=0a \sec(200^\circ) = 0 \implies a = 0 (since sec(200)0\sec(200^\circ) \neq 0)
  2. bsec(200)=0    b=0b \sec(200^\circ) = 0 \implies b = 0 (since sec(200)0\sec(200^\circ) \neq 0) In this case, a=b=c=d=0a=b=c=d=0. The expression a2+b2+c2+d2acbd\frac{a^2 + b^2 + c^2 + d^2}{ac - bd} becomes 00\frac{0}{0}, which is indeterminate. However, the problem states that this expression equals pcosec(200)p \operatorname{cosec}(200^\circ). Since cosec(200)0\operatorname{cosec}(200^\circ) \neq 0, the right side is non-zero if p0p \neq 0. An indeterminate form cannot equal a specific non-zero value. This confirms that the case c2+d2=0c^2 + d^2 = 0 is not the scenario described by the problem.

The final answer is 2\boxed{2}.