Question
Question: Given that for a, b, c, d ∈ R, if a sec (200°) - c tan (200°) = d and b sec (200°) + d tan(200°) = c...
Given that for a, b, c, d ∈ R, if a sec (200°) - c tan (200°) = d and b sec (200°) + d tan(200°) = c then ac−bda2+b2+c2+d2 = pcosec (200°) find the value of p .

2
Solution
Let the given equations be:
- asec(200∘)−ctan(200∘)=d
- bsec(200∘)+dtan(200∘)=c
Let x=200∘. The equations become:
- asecx−ctanx=d
- bsecx+dtanx=c
Multiply both equations by cosx (note that cos(200∘)=0):
- a−csinx=dcosx⟹a=dcosx+csinx
- b+dsinx=ccosx⟹b=ccosx−dsinx
We need to evaluate the expression ac−bda2+b2+c2+d2.
First, let's calculate a2+b2: a2=(dcosx+csinx)2=d2cos2x+c2sin2x+2cdcosxsinx b2=(ccosx−dsinx)2=c2cos2x+d2sin2x−2cdcosxsinx Adding a2 and b2: a2+b2=(d2cos2x+c2sin2x+2cdcosxsinx)+(c2cos2x+d2sin2x−2cdcosxsinx) a2+b2=d2(cos2x+sin2x)+c2(sin2x+cos2x) Using the identity sin2x+cos2x=1: a2+b2=d2(1)+c2(1)=c2+d2.
Now, the numerator of the expression is a2+b2+c2+d2. a2+b2+c2+d2=(c2+d2)+c2+d2=2(c2+d2).
Next, let's calculate the denominator ac−bd: ac=(dcosx+csinx)c=cdcosx+c2sinx bd=(ccosx−dsinx)d=cdcosx−d2sinx Subtracting bd from ac: ac−bd=(cdcosx+c2sinx)−(cdcosx−d2sinx) ac−bd=cdcosx+c2sinx−cdcosx+d2sinx ac−bd=c2sinx+d2sinx=(c2+d2)sinx.
Now substitute the expressions for the numerator and the denominator into the given fraction: ac−bda2+b2+c2+d2=(c2+d2)sinx2(c2+d2).
For this expression to be defined, we must have ac−bd=0, which means (c2+d2)sinx=0. Since x=200∘, sin(200∘)=sin(180∘+20∘)=−sin(20∘)=0. Thus, we must have c2+d2=0. If c2+d2=0, we can cancel the term (c2+d2): (c2+d2)sinx2(c2+d2)=sinx2.
We are given that ac−bda2+b2+c2+d2=pcosec(200∘). Substituting the evaluated expression: sin(200∘)2=pcosec(200∘). Since cosec(200∘)=sin(200∘)1, we have: sin(200∘)2=psin(200∘)1.
Since sin(200∘)=0, we can multiply both sides by sin(200∘): 2=p.
The value of p is 2.
Note: If c2+d2=0, then c=0 and d=0 (since c,d∈R). The original equations become:
- asec(200∘)=0⟹a=0 (since sec(200∘)=0)
- bsec(200∘)=0⟹b=0 (since sec(200∘)=0) In this case, a=b=c=d=0. The expression ac−bda2+b2+c2+d2 becomes 00, which is indeterminate. However, the problem states that this expression equals pcosec(200∘). Since cosec(200∘)=0, the right side is non-zero if p=0. An indeterminate form cannot equal a specific non-zero value. This confirms that the case c2+d2=0 is not the scenario described by the problem.
The final answer is 2.