Solveeit Logo

Question

Question: Given that:\[f(x) = \sqrt 1 - 2x + 2{\sin ^{ - 1}}\left( {\dfrac{{3x - 1}}{2}} \right)\]is a real fu...

Given that:f(x)=12x+2sin1(3x12)f(x) = \sqrt 1 - 2x + 2{\sin ^{ - 1}}\left( {\dfrac{{3x - 1}}{2}} \right)is a real function. Find its domain values.
(a) (13,12)\left( { - \dfrac{1}{3},\dfrac{1}{2}} \right)
(b) (12,13)\left( {\dfrac{1}{2}, - \dfrac{1}{3}} \right)
(c) Cannot be determine
(d) None of these

Explanation

Solution

Hint : The given problem revolves around the concepts of trigonometry. Any trigonometric functions exist within the boundary limits as (especially for sin\sin term) π2sin1θπ2- \dfrac{\pi }{2} \leqslant {\sin ^{ - 1}}\theta \leqslant \dfrac{\pi }{2} . Then simplifying and then multiplying 33 further in desired calculations to obtain the solution.

Complete step-by-step answer :
Since, we have given the function ,
f(x)=12x+2sin1(3x12)f(x) = \sqrt 1 - 2x + 2{\sin ^{ - 1}}\left( {\dfrac{{3x - 1}}{2}} \right)
The equation can also revolved as mathematically, we get
f(x)=(12x)+2sin1(3x12)f(x) = \left( {\sqrt 1 - 2x} \right) + 2{\sin ^{ - 1}}\left( {\dfrac{{3x - 1}}{2}} \right)
Since, we have given that, the condition exists the real values, we can predict that
12x0\Rightarrow \sqrt 1 - 2x \geqslant 0
The equation becomes,
12x\Rightarrow 1 \geqslant 2x
Transferring two on left hand side of the above equation, we get
12x\Rightarrow \dfrac{1}{2} \geqslant x … (i)
As a result, of the function ‘ sin1x{\sin ^{ - 1}}x ’ we know that the values exists between π6- \dfrac{\pi }{6} and π6\dfrac{\pi }{6} respectively
(Where,sin30=sinπ6=12\sin {30^ \circ } = \sin \dfrac{\pi }{6} = \dfrac{1}{2})
Hence, the inverse function exists that is sin1{\sin ^{ - 1}} , so the equation becomes
1(3x12)1- 1 \leqslant \left( {\dfrac{{3x - 1}}{2}} \right) \leqslant 1
[Where, x=12x = \dfrac{1}{2} satisfies the above equation]
Multiplying the equation 1(3x12)1- 1 \leqslant \left( {\dfrac{{3x - 1}}{2}} \right) \leqslant 1 by sin\sin , the equation becomes
2(3x1)2- 2 \leqslant \left( {3x - 1} \right) \leqslant 2
Adding 11 predominantly, we get
13x3- 1 \leqslant 3x \leqslant 3
Dividing the equation by 33 , we get
13x1- \dfrac{1}{3} \leqslant x \leqslant 1
But, from (i) that is 12x\dfrac{1}{2} \geqslant x
13x21- \dfrac{1}{3} \leqslant \dfrac{x}{2} \leqslant 1
Hence, xx tends to,
x(,12)x \in \left( { - \infty ,\dfrac{1}{2}} \right)
Where, infinity =13\infty = \dfrac{1}{3}
x(13,12)\therefore x \equiv \left( { - \dfrac{1}{3},\dfrac{1}{2}} \right)
\Rightarrow \therefore Hence, the option (a) is correct!
So, the correct answer is “Option a”.

Note : One should know the condition of trigonometric terms such as ‘sine’, ‘cosine’, etc. while solving a question (here, we used the condition of ‘sine’ term). We should also know the basic concepts of simplification of the problem studied in earlier classes. As a result, to get the accurate answer we must take care of the calculations so as to be sure of our final answer.