Question
Question: Given that e<sup>iA</sup>, e<sup>iB</sup>, e<sup>iC</sup> are in A.P., where A, B, C are the angles ...
Given that eiA, eiB, eiC are in A.P., where A, B, C are the angles of a triangle then the triangle is –
A
Isosceles
B
Equilateral
C
Right angled
D
None
Answer
Isosceles
Explanation
Solution
Sol. 2eiB = eiA + eiC
Equating real and imaginary parts
2 cos B = cos A + cos C, 2 sin B = sin A + sin C
\ tan B = 2cos2A+Ccos2A−C2sin2A+Ccos2A−C=tan2A+C
or tan B = tan 2A+C Ž tan B = cot 2B
\ B = 2π– 2B or 23B = 2π
\ B = 3π = 60°\ A + C = 120°
\ 2 cos 60° = 2 cos 2A+C cos 2A−Cby (1)
1 = 2 cos 60° cos 2A−C
\ cos 2A−C = 1 Ž 2A−C = 0 Ž A = C.