Solveeit Logo

Question

Question: Given that e<sup>iA</sup>, e<sup>iB</sup>, e<sup>iC</sup> are in A.P., where A, B, C are the angles ...

Given that eiA, eiB, eiC are in A.P., where A, B, C are the angles of a triangle then the triangle is –

A

Isosceles

B

Equilateral

C

Right angled

D

None

Answer

Isosceles

Explanation

Solution

Sol. 2eiB = eiA + eiC

Equating real and imaginary parts

2 cos B = cos A + cos C, 2 sin B = sin A + sin C

\ tan B = 2sinA+C2cosAC22cosA+C2cosAC2=tanA+C2\frac{2\sin\frac{A + C}{2}\cos\frac{A - C}{2}}{2\cos\frac{A + C}{2}\cos\frac{A - C}{2}} = \tan\frac{A + C}{2}

or tan B = tan A+C2\frac{A + C}{2} Ž tan B = cot B2\frac{B}{2}

\ B = π2\frac{\pi}{2}B2\frac{B}{2} or 3B2\frac{3B}{2} = π2\frac{\pi}{2}

\ B = π3\frac{\pi}{3} = 60°\ A + C = 120°

\ 2 cos 60° = 2 cos A+C2\frac{A + C}{2} cos AC2\frac{A - C}{2}by (1)

1 = 2 cos 60° cos AC2\frac{A - C}{2}

\ cos AC2\frac{A - C}{2} = 1 Ž AC2\frac{A - C}{2} = 0 Ž A = C.