Solveeit Logo

Question

Question: Given that \[\cos \dfrac{x}{2} = \dfrac{{12}}{{13}}\] and \[x\] lies in first quadrant, calculate wi...

Given that cosx2=1213\cos \dfrac{x}{2} = \dfrac{{12}}{{13}} and xx lies in first quadrant, calculate without the use of tables, the values of sinx\sin x, cosx\cos x and tanx\tan x

Explanation

Solution

Here, we will use a half angle formula to find the value of cosx\cos x. Similarly, we will find the value of sinx\sin x by using the half angle formula. Then we will find the value of tanx\tan x by simply dividing them using the property of tanx\tan x.

Formula used:
1. cos2θ=2cos2θ1\cos 2\theta = 2{\cos ^2}\theta - 1
2. sin2x2+cos2x2=1{\sin ^2}\dfrac{x}{2} + {\cos ^2}\dfrac{x}{2} = 1
3. sin2θ=2sinθcosθ\sin 2\theta = 2\sin \theta \cos \theta
4. tanx=sinxcosx\tan x = \dfrac{{\sin x}}{{\cos x}}

Complete step-by-step answer:
According to the question, cosx2=1213\cos \dfrac{x}{2} = \dfrac{{12}}{{13}}.
Now, by using the half angle formula, cos2θ=2cos2θ1\cos 2\theta = 2{\cos ^2}\theta - 1.
cosx=2cos2x21\cos x = 2{\cos ^2}\dfrac{x}{2} - 1…………………………………..(1)\left( 1 \right)
Therefore, from equation (1)\left( 1 \right), we get
cosx=2(1213)21=2(144169)1\cos x = 2{\left( {\dfrac{{12}}{{13}}} \right)^2} - 1 = 2\left( {\dfrac{{144}}{{169}}} \right) - 1
cosx=(288169169)=119169\Rightarrow \cos x = \left( {\dfrac{{288 - 169}}{{169}}} \right) = \dfrac{{119}}{{169}}
Therefore, the value of cosx=119169\cos x = \dfrac{{119}}{{169}}…………………………(2)\left( 2 \right)
Now, we know that, sin2x2+cos2x2=1{\sin ^2}\dfrac{x}{2} + {\cos ^2}\dfrac{x}{2} = 1.
sin2x2=1cos2x2\Rightarrow {\sin ^2}\dfrac{x}{2} = 1 - {\cos ^2}\dfrac{x}{2}
But, cosx2=1213\cos \dfrac{x}{2} = \dfrac{{12}}{{13}}, hence,
sin2x2=1(1213)2=1144169\Rightarrow {\sin ^2}\dfrac{x}{2} = 1 - {\left( {\dfrac{{12}}{{13}}} \right)^2} = 1 - \dfrac{{144}}{{169}}
sin2x2=169144169=25169\Rightarrow {\sin ^2}\dfrac{x}{2} = \dfrac{{169 - 144}}{{169}} = \dfrac{{25}}{{169}}
Taking square root on both sides, we get
sinx2=25169=513\Rightarrow \sin \dfrac{x}{2} = \sqrt {\dfrac{{25}}{{169}}} = \dfrac{5}{{13}}
Substituting sinx2=513\sin \dfrac{x}{2} = \dfrac{5}{{13}} and cosx2=1213\cos \dfrac{x}{2} = \dfrac{{12}}{{13}} in the formula sinx=2sinx2×cosx2\sin x = 2\sin \dfrac{x}{2} \times \cos \dfrac{x}{2}, we get
sinx=2(513)(1213)\Rightarrow \sin x = 2\left( {\dfrac{5}{{13}}} \right)\left( {\dfrac{{12}}{{13}}} \right)
Hence, solving further, we get
sinx=120169\Rightarrow \sin x = \dfrac{{120}}{{169}}………………………………(3)\left( 3 \right)
Therefore, the value of sinx=120169\sin x = \dfrac{{120}}{{169}}
Now, we know that tanx=sinxcosx\tan x = \dfrac{{\sin x}}{{\cos x}}.
Hence, from equation (2)\left( 2 \right)and (3)\left( 3 \right), we get
tanx=120169119169=120119\tan x = \dfrac{{\dfrac{{120}}{{169}}}}{{\dfrac{{119}}{{169}}}} = \dfrac{{120}}{{119}}
Therefore, without the use of tables, we have calculated the values of sinx\sin x, cosx\cos x and tanx\tan xas 120169\dfrac{{120}}{{169}},119169\dfrac{{119}}{{169}}and 120119\dfrac{{120}}{{119}} respectively.
This is the required answer.

Note: We know that we can apply the trigonometric identities in a right angled triangle whose:
Hypotenuse=H = H, Perpendicular side =P = Pand the Base =B = B.
Hence, an alternate way to solve this question is:
We will first find the value of cosx\cos x in the same way as before.
Hence, by using half angle formula, and from (1)\left( 1 \right)and (2)\left( 2 \right), we will get:
cosx=119169\cos x = \dfrac{{119}}{{169}}
Now, instead of using formulas further, we will use the right angle formulas.
As we know, in a right angled triangle, cosx=BH=119169\cos x = \dfrac{B}{H} = \dfrac{{119}}{{169}}
Also, since, cosx=BH=119169\cos x = \dfrac{B}{H} = \dfrac{{119}}{{169}}
Hence, substituting B=119B = 119and H=169H = 169 in the formula H2=P2+B2{H^2} = {P^2} + {B^2}, we get
(169)2(119)2=P2\Rightarrow {\left( {169} \right)^2} - {\left( {119} \right)^2} = {P^2}
Using the property (a2b2)=(ab)(a+b)\left( {{a^2} - {b^2}} \right) = \left( {a - b} \right)\left( {a + b} \right), we get
P2=(169+119)(169119)\Rightarrow {P^2} = \left( {169 + 119} \right)\left( {169 - 119} \right)
P2=288×50=14400\Rightarrow {P^2} = 288 \times 50 = 14400
Taking square root on both side, we get
P=14400=120\Rightarrow P = \sqrt {14400} = 120
Therefore, sinx=PH=120169\sin x = \dfrac{P}{H} = \dfrac{{120}}{{169}}
And, tanx=PB=120119\tan x = \dfrac{P}{B} = \dfrac{{120}}{{119}}
Therefore, without the use of tables, we have calculated the values of sinx\sin x, cosx\cos x and tanx\tan x as 120169\dfrac{{120}}{{169}},119169\dfrac{{119}}{{169}} and 120119\dfrac{{120}}{{119}} respectively.