Solveeit Logo

Question

Mathematics Question on Statistics

Given that xˉ\bar{x} is the mean and I¨ƒ2σ2 is the variance of n observations x1,x2,...,xn. Prove that the mean and variance of the observations ax1,ax2,ax3,...,axn are axˉa\bar{x} and a2I¨ƒ2a^2σ2, respectively,(a0).(a ≠ 0).

Answer

The given n observations are x1, x2…xn

Mean=xˉMean=\bar{x}

Varience=if2Varience= if^2

σ2=1ni=1n(xixxˉ)2..........(1)σ^2=\frac{1}{n}\sum_{i=1}^n(x_i-x-\bar{x})^2\,..........(1)

3×83×8

=24....[(Using(1)]=24 ....[(Using(1)]

Standarddeviationσ=1nti16(xixˉ)2Standard\,deviation\,σ=√\frac{1}{n}\sum_{ti1}^6(x_i-\bar{x})^2

If each observation is multiplied by a and the new observations are yi, then

yi=ax,i.e.,xi=1ay1y_i=ax,\,i.e.,\,x_i=\frac{1}{a}y_1

yˉ1ni=1nyi=12i=1naxi=ani=1nxi=axˉ(xˉ=1ni=1nxi)\bar{y}\frac{1}{n}\sum_{i=1}^ny_i=\frac{1}{2}\sum_{i=1}^nax_i=\frac{a}{n}\sum_{i=1}^nx_i=a\bar{x}\,\,(\bar{x}=\frac{1}{n}\sum_{i=1}^nx_i)

Therefore, mean of the observations, ax1, ax2 ….axn, is axˉa\bar{x},

Substituting the values of x and xˉ\bar{x} in (1), we obtain

σ2=12i=1n(1ayi1ayi)2σ^2=\frac{1}{2}\sum_{i=1}^n(\frac{1}{a}y_i-\frac{1}{a}y_i)^2

σ2σ2=1ni=1n(yiyˉ)2σ^2σ^2=\frac{1}{n}\sum_{i=1}^n(y_i-\bar{y})^2

Thus, the variance of the observations, ax1, ax2…..axn, is a2 σ2 .