Solveeit Logo

Question

Question: Given that a photon of light of wavelength \[10,000\overset{\text{o}}{\mathop{\text{A}}}\,\]has an e...

Given that a photon of light of wavelength 10,000Ao10,000\overset{\text{o}}{\mathop{\text{A}}}\,has an energy equal to 1.23 eV1.23\text{ eV}. When light of wavelength 5000Ao5000\overset{\text{o}}{\mathop{\text{A}}}\,and intensity Io{{I}_{\text{o}}}falls on a photoelectric cell, the saturation current is 0.40×106 A0.40\times {{10}^{-6}}\text{ A} and the stopping potential is 1.36 V1.36\text{ V}; then the work function is:
(A) 0.43 eV0.43\text{ eV}
(B) 1.10 eV1.10\text{ eV}
(C) 1.36 eV1.36\text{ eV}
(D) 2.47 eV2.47\text{ eV}

Explanation

Solution

The maximum kinetic energy is independent of intensity of light and also the saturation current. The work function depends on the wavelength incident light and the stopping potential of the photoelectric cell.
Formula used:
The work-function W of the metal in terms of maximum kinetic energyEk{{E}_{k}} is given by:
W=hcλEkW=\dfrac{hc}{\lambda }-{{E}_{k}}
Where λ\lambda is the wavelength of incident radiation, c is the speed of light and h is the Planck’s constant.
Now, the stopping potential Vs{{V}_{s}}is a measure of the maximum kinetic energy Ek{{E}_{k}}of the electrons and is therefore given by:
Ek=eVs{{E}_{k}}=e{{V}_{s}}
Where e is the charge on electrons.

Complete step by step answer:
Wavelength of incident light, λ=5000Ao=5000×1010 m\lambda =5000\overset{\text{o}}{\mathop{\text{A}}}\,=5000\times {{10}^{-10}}\text{ m}
The stopping potential, Vs=1.36 V{{V}_{s}}=1.36\text{ V}
Speed of light in air, c=3×108 m/sc=3\times {{10}^{8}}\text{ m/s}
Planck’s constant, h=6.6×1034 Jsh=6.6\times {{10}^{-34}}\text{ Js}
The charge on electrons, e=1.6×1019 Ce=1.6\times {{10}^{-19}}\text{ C}
Substitute the value of e and Vs{{V}_{s}}, in the kinetic energy-formula to get maximum kinetic energy Ek{{E}_{k}}:

& {{E}_{k}}=(1.6\times {{10}^{-19}}\text{ C)(1}\text{.36 V)} \\\ & {{E}_{k}}=2.176\times {{10}^{-19}}\text{ J} \\\ \end{aligned}$$ Now, substitute the values of h, c, $$\lambda $$ and $${{E}_{k}}$$ in the work function-formula to get W: $$\begin{aligned} & W=\dfrac{hc}{\lambda }-{{E}_{k}} \\\ & W=\dfrac{(6.6\times {{10}^{-34}}\text{ Js})(3\times {{10}^{8}}\text{ m/s})}{5000\times {{10}^{-10}}\text{ m}}-(2.176\times {{10}^{-19}}\text{ J)} \\\ & W=(3.96\times {{10}^{-19}}\text{ J)}-(2.176\times {{10}^{-19}}\text{ J)} \\\ & W=1.78\times {{10}^{-19}}\text{ J} \\\ & W=1.10\text{ eV }\\!\\![\\!\\!\text{ 1 eV}=1.6\times {{10}^{-19}}\text{ J }\\!\\!]\\!\\!\text{ } \\\ \end{aligned}$$ Therefore the work function of the photoelectric cell is $$1.10\text{ eV}$$. Hence, option B is the correct answer. **Additional information:** The minimum energy required for the emission of photoelectrons from a metal is called the ‘work function’ of the metal. **Note:** All the physical quantities should be in the same unit system, preferably the S.I. unit system. Convert the wavelength given in angstrom to meter before calculating work function in joules. Finally convert the work function obtained in joules to electron-volt, to get the desired answer; else the answer will not match with the options. The intensity of light, saturation current of the cell are extra information that are not utilised to solve the problem.