Solveeit Logo

Question

Question: Given that \({{a}_{1}},{{a}_{2}},{{a}_{3}},......{{a}_{n}}\) form an arithmetic progression, find th...

Given that a1,a2,a3,......an{{a}_{1}},{{a}_{2}},{{a}_{3}},......{{a}_{n}} form an arithmetic progression, find the following sum S=i=1naiai+1ai+2ai+ai+2S=\sum\limits_{i=1}^{n}{\dfrac{{{a}_{i}}{{a}_{i+1}}{{a}_{i+2}}}{{{a}_{i}}+{{a}_{i+2}}}}
(A) S=n2[a12+a1d(n)+(n2)(2n+5)6d2]S=\dfrac{n}{2}\left[ a_{1}^{2}+{{a}_{1}}d\left( n \right)+\dfrac{\left( n-2 \right)\left( 2n+5 \right)}{6}{{d}^{2}} \right]
(B) S=n2[a12+a1d(n+1)+(n2)(2n+5)6d2]S=\dfrac{n}{2}\left[ a_{1}^{2}+{{a}_{1}}d\left( n+1 \right)+\dfrac{\left( n-2 \right)\left( 2n+5 \right)}{6}{{d}^{2}} \right]
(C) S=n2[a12+a1d(n+1)+(n1)(2n+5)6d2]S=\dfrac{n}{2}\left[ a_{1}^{2}+{{a}_{1}}d\left( n+1 \right)+\dfrac{\left( n-1 \right)\left( 2n+5 \right)}{6}{{d}^{2}} \right]
(D) S=n2[a13+a1d(n+1)+(n1)(2n+5)6d2]S=\dfrac{n}{2}\left[ a_{1}^{3}+{{a}_{1}}d\left( n+1 \right)+\dfrac{\left( n-1 \right)\left( 2n+5 \right)}{6}{{d}^{2}} \right]

Explanation

Solution

For answering this question we will use the basic concept regarding the arithmetic progressions. When given a1,a2,.............an{{a}_{1}},{{a}_{2}},.............{{a}_{n}} forms arithmetic progression we can say that ai+1=ai+d{{a}_{i+1}}={{a}_{i}}+d and an=a1+(n1)d{{a}_{n}}={{a}_{1}}+\left( n-1 \right)d where d=a2a1d={{a}_{2}}-{{a}_{1}} and the sum of the nn term which is given as Sn=i=1nai=(n2)[2a1+(n1)d]{{S}_{n}}=\sum\limits_{i=1}^{n}{{{a}_{i}}}= \left( \dfrac{n}{2} \right)\left[ 2{{a}_{1}}+\left( n -1 \right)d \right]

Complete step-by-step solution:
Now considering from the question we have been given that a1,a2,.............an{{a}_{1}},{{a}_{2}},.............{{a}_{n}} forms arithmetic progression. So we can say that ai+1=ai+d{{a}_{i+1}}={{a}_{i}}+d because an=a1+(n1)d{{a}_{n}}={{a}_{1}}+\left( n-1 \right)d where d=a2a1d={{a}_{2}}-{{a}_{1}} .
For answering this question we need to find the sum S=i=1naiai+1ai+2ai+ai+2S=\sum\limits_{i=1}^{n}{\dfrac{{{a}_{i}}{{a}_{i+1}}{{a}_{i+2}}}{{{a}_{i}}+{{a}_{i+2}}}}
By substituting the respective values we will have,
S=i=1nai(ai+d)(ai+2d)ai+ai+2d S=i=1nai(ai+d)(ai+2d)2(ai+d) S=12[i=1nai2+i=1n2aid] \begin{aligned} & S=\sum\limits_{i=1}^{n}{\dfrac{{{a}_{i}}\left( {{a}_{i}}+d \right)\left( {{a}_{i}}+2d \right)}{{{a}_{i}}+{{a}_{i}}+2d}} \\\ & \Rightarrow S=\sum\limits_{i=1}^{n}{\dfrac{{{a}_{i}}\left( {{a}_{i}}+d \right)\left( {{a}_{i}}+2d \right)}{2\left( {{a}_{i}}+d \right)}} \\\ & \Rightarrow S=\dfrac{1}{2}\left[ \sum\limits_{i=1}^{n}{a_{i}^{2}+\sum\limits_{i=1}^{n}{2{{a}_{i}}d}} \right] \\\ \end{aligned}
Now, we will write the expansion of i=1nai2\sum\limits_{i=1}^{n}{a_{i}^{2}}
i=1nai2=i=1n(ai+(i1)d)2 i=1n(ai2+d2(i1)2+2aid(i1)) \begin{aligned} & \sum\limits_{i=1}^{n}{a_{i}^{2}}={{\sum\limits_{i=1}^{n}{\left( {{a}_{i}}+\left( i-1 \right)d \right)}}^{2}} \\\ & \Rightarrow \sum\limits_{i=1}^{n}{\left( a_{i}^{2}+{{d}^{2}}{{\left( i-1 \right)}^{2}}+2{{a}_{i}}d\left( i-1 \right) \right)} \\\ \end{aligned}
By expanding the terms i=1n(i1)\sum\limits_{i=1}^{n}{\left( i-1 \right)} and i=1n(i1)2\sum\limits_{i=1}^{n}{{{\left( i-1 \right)}^{2}}}, we will get the below equation using i=1ni=n(n1)2\sum\limits_{i=1}^{n}{i}=\dfrac{n\left( n-1 \right)}{2} and i=1ni2=n(n1)(2n1)6\sum\limits_{i=1}^{n}{{{i}^{2}}}=\dfrac{n\left( n-1 \right)\left( 2n-1 \right)}{6} we will have i=1nai2=nai2+d2(n(n1)(2n1)6)+2aid(n(n1)2)\sum\limits_{i=1}^{n}{a_{i}^{2}}=na_{i}^{2}+{{d}^{2}}\left( \dfrac{n\left( n-1 \right)\left( 2n-1 \right)}{6} \right)+2{{a}_{i}}d\left( \dfrac{n\left( n-1 \right)}{2} \right)
We will also use the formulae for the sum of nn terms which is given as Sn=i=1nai=(n2)[2a1+(n1)d]{{S}_{n}}=\sum\limits_{i=1}^{n}{{{a}_{i}}}= \left( \dfrac{n}{2} \right)\left[ 2{{a}_{1}}+\left( n -1 \right)d \right]
Now, by using this value, we will get the below equation. After substituting we will simplify the equation more further very carefully.
S=12[na12+d2(n(n1)(2n1)6)+2a1d(n(n1)2)]+2d(n2)[2a1+(n1)d] S=12[na12+d2(n(n1)(2n1)6)+2a1d(n(n1)2)]+2a1dn+d2n(n1) S=12[na12+d2n(n1)[2n16+1]+2a1dn[n12+1]] S=12[na12+(d2n(n1)(2n+5)6)+a1dn(n+1)] S=n2[a12+(d2(n1)(2n+5)6)+a1d(n+1)] \begin{aligned} & S=\dfrac{1}{2}\left[ na_{1}^{2}+{{d}^{2}}\left( \dfrac{n\left( n-1 \right)\left( 2n-1 \right)}{6} \right)+2{{a}_{1}}d\left( \dfrac{n\left( n-1 \right)}{2} \right) \right]+2d\left( \dfrac{n}{2} \right)\left[ 2{{a}_{1}}+\left( n -1 \right)d \right] \\\ & \Rightarrow S=\dfrac{1}{2}\left[ na_{1}^{2}+{{d}^{2}}\left( \dfrac{n\left( n -1 \right)\left( 2n-1 \right)}{6} \right)+2{{a}_{1}}d\left( \dfrac{n\left( n-1 \right)}{2} \right) \right]+2{{a}_{1}}dn+{{d}^{2}}n\left( n -1 \right) \\\ & \Rightarrow S=\dfrac{1}{2}\left[ na_{1}^{2}+{{d}^{2}}n\left( n-1 \right)\left[ \dfrac{2n-1}{6}+1 \right]+2{{a}_{1}}dn\left[ \dfrac{n -1}{2}+1 \right] \right] \\\ & \Rightarrow S=\dfrac{1}{2}\left[ na_{1}^{2}+\left( \dfrac{{{d}^{2}}n\left( n-1 \right)\left( 2n+5 \right)}{6} \right)+{{a}_{1}}dn\left( n+1 \right) \right] \\\ & \Rightarrow S=\dfrac{n}{2}\left[ a_{1}^{2}+\left( \dfrac{{{d}^{2}}\left( n -1 \right)\left( 2n+5 \right)}{6} \right)+{{a}_{1}}d\left( n+1 \right) \right] \\\ \end{aligned}
Therefore option C is the correct option.

Note: While answering questions of this type we should be sure with the concept and expansions we make. Similar to arithmetic progression there exist geometric progression when given a1,a2,.............an{{a}_{1}},{{a}_{2}},.............{{a}_{n}} forms geometric progression we can say that ai+1=air{{a}_{i+1}}={{a}_{i}}r and an=a1rn1{{a}_{n}}={{a}_{1}}{{r}^{n-1}} where r=a2a1r=\dfrac{{{a}_{2}}}{{{a}_{1}}} and the sum of the nn term which is given as Sn=i=1nai=a1(rn1)(r1){{S}_{n}}=\sum\limits_{i=1}^{n}{{{a}_{i}}}=\dfrac{{{a}_{1}}\left( {{r}^{n}}-1 \right)}{\left( r-1 \right)}.