Question
Question: Given that 0 \< x \<\(\frac{\pi}{4}\),\(\frac{\pi}{4}\)\< y \<\(\frac{\pi}{2}\) and \(\sum_{k = 0}^{...
Given that 0 < x <4π,4π< y <2π and ∑k=0∞(–1)ktan2k x = p, ∑k=0∞(–1)kcot2k y = q, then ∑k=0∞tan2kx cot2k y is –
A
p1+q1−pq1
B
p1+q1−pq11
C
p + q – pq
D
p + q + pq
Answer
p1+q1−pq11
Explanation
Solution
p = 1 – tan2 x + tan4 x –…… = 1−(−tan2x)1= cos2 x
q = 1 – cot2 y + cot4 y – …… = 1−(−cot2y)1= sin2 y
Now ∑k=0∞tan2kxcot2ky
= 1 + tan2 x cot2 y + tan4 x cot4 y + ……
= 1−tan2xcot2y1=1−cos2x1−cos2x.sin2y1−sin2y1
= 1−(p1−p)(q1−q)1=pq−1+p+q−pqpq
= p+q−1pq=q1+p1−pq11